• Journal of Inorganic Materials
  • Vol. 38, Issue 4, 406 (2023)
Haiyang QIU, Guangtan MIAO, Hui LI, Qi LUAN..., Guoxia LIU and Fukai SHAN*|Show fewer author(s)
Author Affiliations
  • College of Microtechnology & Nanotechnology, Qingdao University, Qingdao 266071, China
  • show less
    DOI: 10.15541/jim20220675 Cite this Article
    Haiyang QIU, Guangtan MIAO, Hui LI, Qi LUAN, Guoxia LIU, Fukai SHAN. Effect of Plasma Treatment on the Long-term Plasticity of Synaptic Transistor[J]. Journal of Inorganic Materials, 2023, 38(4): 406 Copy Citation Text show less
    References

    [1] V K SANGWAN, M C HERSAM. Neuromorphic nanoelectronic materials. Nature Nanotechnology, 15: 517(2020).

    [2] O MURAT, E NICOLAS, B M WANG et al. Nanosecond protonic programmable resistors for analog deep learning. Science, 539(2022).

    [3] V M HO, J LEE, K C MARTIN. The cell biology of synaptic plasticity. Science, 623(2011).

    [4] Y X ZHU, Q WAN, F K SHAN et al. Solution-processed electrolyte gated In2O3 flexible synaptic transistors for brain-inspired neuromorphic applications. ACS Applied Materials & Interfaces, 1061(2020).

    [5] Y X ZHU, G X LIU, F K SHAN et al. Electrospun ZnSnO nanofibers for neuromorphic transistors with ultralow energy consumption. IEEE Electron Device Letters, 1776(2019).

    [6] C X JIN, J SUN, J L YANG et al. Artificial vision adaption mimicked by an optoelectrical In2O3 transistor array. Nano Letters, 22: 3372(2022).

    [7] S M KWON, Y H KIM, S K PARK et al. Environment-adaptable artificial visual perception behaviors using a light-adjustable optoelectronic neuromorphic device array. Advanced Materials, 1906433(2019).

    [8] J X WANG, Y CHEN, J SUN et al. Deep-ultraviolet-triggered neuromorphic functions in In-Zn-O phototransistors. Applied Physics Letters, 151101(2018).

    [9] C X JIN, W R LIU, J SUN et al. Printable ion-gel-gated In2O3 synaptic transistor array for neuro-inspired memory. Applied Physics Letters, 233701(2022).

    [10] J T YANG, C GE, K J JIN et al. Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Advanced Materials, 1801548(2018).

    [11] H Y QIU, D D HAO, F K SHAN et al. Transparent and biocompatible In2O3artificial synapses with lactose-citric acid electrolyte for neuromorphic computing. Applied Physics Letters, 183301(2022).

    [12] S M YU. Neuro-inspired computing with emerging nonvolatile memory. Proceedings of the IEEE, 260(2018).

    [13] R D NIKAM, M KWAK, J LEE et al. Controlled ionic tunneling in lithium nanoionic synaptic transistor through atomically thin graphene layer for neuromorphic computing. Advanced Electronic Materials, 1901100(2019).

    [14] J SUN, S OH, J H PARK et al. Optoelectronic synapse based on IGZO-alkylated graphene oxide hybrid structure. Advanced Functional Materials, 1804397(2018).

    [15] H LEE, M JIN, H J NA et al. Implementation of synaptic device using ultraviolet ozone. Advanced Functional Materials, 2110591(2021).

    [16] C S YANG, D S SHANG, N LIU et al. All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing. Advanced Functional Materials, 1804170(2018).

    [17] J J WANG, Y N DING, F K SHAN et al. Performance enhancement of field-effect transistors based on In2O3 nanofiber networks by plasma treatment. IEEE Electron Device Letters, 176(2021).

    [18] G D FENG, J JIANG, Q WAN et al. A sub-10nm vertical organic/ inorganic hybrid transistor for pain-perceptual and sensitization-regulated nociceptor emulation. Advanced Materials, 1906171(2019).

    [19] G GILLUND, R M SHIFFRIN. A retrieval model for both recognition and recall. Psychological Review, 1(1984).

    [20] H LI, Y N DING, F K SHAN et al. Flexible and compatible synaptic transistor based on electrospun In2O3 nanofibers. IEEE Transactions on Electron Devices, 5363(2022).

    [21] S NIE, Y L HE, Q WAN et al. Low-voltage oxide-based synaptic transistors for spiking humidity detection. IEEE Electron Device Letters, 459(2019).

    [22] Y X ZHU, B C PENG, Q WAN et al. IGZO nanofiber photoelectric neuromorphic transistors with indium ratio tuned synaptic plasticity. Applied Physics Letters, 133502(2022).

    [23] Y H LIU, L Q ZHU, Q WAN et al. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Advanced Materials, 5599(2015).

    [24] C J WAN, L Q ZHU, Q WAN et al. Laterally coupled synaptic transistors gated by proton conducting sodium alginate films. IEEE Electron Device Letters, 672(2014).

    [25] S KE, C Y FU, Q WAN et al. BCM learning rules emulated by a-IGZO-based photoelectronic neuromorphic transistors. IEEE Transactions on Electron Devices, 4646(2022).

    [26] W QIN, B H KANG, H J KIM. Flexible artificial synapses with a biocompatible maltose-ascorbic acid electrolyte gate for neuromorphic computing. ACS Applied Materials & Interfaces, 34597(2021).

    [27] Y X ZHU, H W MAO, Q WAN et al. Photoelectric synapse based on InGaZnO nanofibers for high precision neuromorphic computing. IEEE Electron Device Letters, 651(2022).

    [28] C S CHEN, Y L HE, Q WAN et al. A photoelectric spiking neuron for visual depth perception. Advanced Materials, 2201895(2022).

    [29] Y L HE, S NIE, Q WAN et al. Indium-gallium-zinc-oxide Schottky synaptic transistors for silent synapse conversion emulation. IEEE Electron Device Letters, 139(2019).

    [30] C QIAN, S OH, J H CHO et al. Solar-stimulated optoelectronic synapse based on organic heterojunction with linearly potentiated synaptic weight for neuromorphic computing. Nano Energy, 66: 104095(2019).

    Haiyang QIU, Guangtan MIAO, Hui LI, Qi LUAN, Guoxia LIU, Fukai SHAN. Effect of Plasma Treatment on the Long-term Plasticity of Synaptic Transistor[J]. Journal of Inorganic Materials, 2023, 38(4): 406
    Download Citation