• Laser & Optoelectronics Progress
  • Vol. 54, Issue 7, 72401 (2017)
Zhou Ting1, Wang Tongbiao1, Liao Qinghua1, Liu Jiangtao1, Yu Tianbao1, and Liu Nianhua2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop54.072401 Cite this Article Set citation alerts
    Zhou Ting, Wang Tongbiao, Liao Qinghua, Liu Jiangtao, Yu Tianbao, Liu Nianhua. Local Density of States Near Surface of Metal with Periodic Hole Arrays[J]. Laser & Optoelectronics Progress, 2017, 54(7): 72401 Copy Citation Text show less
    References

    [1] Zhou Jun, Li Juan, Wang Qingfeng, et al. Optimized design of infrared opto-mechanical systems based on the spontaneous suppression[J]. Acta Optica Sinica, 2015, 35(3): 0322003.

    [2] Cao Zhaodong, Wang Li, Zhang Zhixiang, et al. Experimental study on amplified spontaneous emission in large-aperture slab amplifiers[J]. Chinese J Lasers, 2016, 43(6): 0601006.

    [3] Zong Yixin, Xia Jianbai, Wu Haibin. Photonic band structure and state density of dielectric/dielectric and metal/dielectric photonic crystals[J]. Laser & Optoelectronics Progress, 2016, 53(3): 031602.

    [4] van Kampen N G, Nijboer B R A, Schram K. On the macroscopic theory of van der Waals forces[J]. Physics Letters A, 1968, 26(307): 307-308.

    [5] Gerlach E. Equivalence of van der Waals forces between solids and the surface-plasmon interaction[J]. Physical Review B, 1971, 4(2): 393-396.

    [6] Pendry J B. Shearing the vacuum-quantum friction[J]. Journal of Physics: Condensed Matter, 1997, 9(47): 10301-10320.

    [7] Mulet J P, Joulain K, Carminati R, et al. Enhanced radiative heat transfer at nanometric distances[J]. Microscale Thermophysical Engineering, 2002, 6(3): 209-222.

    [8] Narayanaswamy A, Chen G. Surface modes for near field thermophotovoltaics[J]. Applied Physics Letters, 2003, 82(20): 3544-3546.

    [9] Fu C J, Zhang Z M. Nanoscale radiation heat transfer for silicon at different doping levels[J]. International Journal of Heat and Mass Transfer, 2006, 49(9): 1703-1718.

    [10] Fu C J, Tan W C. Near-field radiative heat transfer between two plane surfaces with one having a dielectric coating[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110: 1027-1036.

    [11] Wang T B, Liu N H, Liu J T, et al. Quantum friction controlled by plasmons between graphene sheets[J]. The European Physical Journal B, 2014, 87(185): 1-5.

    [12] Buchanan M. Friction without contact[J]. Nature Physics, 2007, 3: 827.

    [13] Saitoh K, Hayashi K, Shibayama Y, et al. Gigantic maximum of nanoscale noncontact friction[J]. Physical Review Letters, 2010, 105(23): 236103.

    [14] She J H, Balatsky A V. Noncontact friction and relaxational dynamics of surface defects[J]. Physical Review Letters, 2012, 108(13): 136101.

    [15] Volokitin A I, Persson B N J. Noncontact friction between nanostructures[J]. Physical Review B, 2003, 68(15): 155420.

    [16] Zhao R K, PendryJ B, Manjavacas A, et al. Rotational quantum friction[J]. Physical Review Letters, 2012, 109(12): 123604.

    [17] Volokitin A I, Persson B N J. Resonant photon tunneling enhancement of the radiative heat transfer[J]. Physical Review B, 2004, 69(4): 045417.

    [18] Volokitin A I, Persson B N J. Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2[J]. Physical Review B, 2011, 83(24): 241407.

    [19] Svetovoy V B, van Zwol P J, Chevrier J. Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics[J]. Physical Review B, 2012, 85(15): 155418.

    [20] Ilic O, Joannopoulos J D, Soljacˇic' M, et al. Near-field thermal radiation transfer controlled by plasmons in graphene[J]. Physical Review B, 2012, 85(15): 155422.

    [21] Joulain K, Mulet J P, Marquier F, et al. Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field[J]. Surface Science Reports, 2005, 57: 59-112.

    [22] Joulain K, Carminati R, Mulet J P, et al. Definition and measurement of the local density of electromagnetic states close to an interface[J]. Physical Review B, 2003, 68(24): 245405.

    [23] Wijnands F, Pendry J B, Garcia-Vidal F J, et al. Green′s functions for Maxwell's equations application to spontaneous emission[J]. Optical Quantum Electron, 1997, 29: 199-216.

    [24] Falkovsky L A, Pershoguba S S. Optical far-infrared properties of a graphene monolayer and multilayer[J]. Physical Review B, 2007, 76(15): 153410.

    [25] Falkovsky L A. Optical properties of graphene[J]. Journal Physics: Conference Series, 2008, 129(1): 012004.

    [26] Stauber T, Peres N M R, Geim A K. Optical conductivity of graphene in the visible region of the spectrum[J]. Physical Review B, 2008, 78(8): 085432.

    [27] Liu Weiguang, Hu Bin, Li Biao, et al. Research progress of optical modulator based on graphene-metal composite structures[J]. Laser & Optoelectronics Progress, 2016, 53(3): 030005.

    [28] Messina R, Hugonin J P, Greffet J J, et al. Tuning the electromagnetic local density of states in graphene-covered systems via strong coupling with graphene plasmons[J]. Physical Review B, 2013, 87(8): 085421.

    [29] Han Qingyao, Tang Juntao, Zhang Chao, et al. The effects of local density of states on surface plasmon polaritons[J]. Acta Physica Sinicia, 2012, 61(13): 135202.

    [30] Levene M J, Korlach J, Turner S W, et al. Zero-mode waveguides for single-molecule analysis at high concentrations[J]. Science, 2003, 299: 682-686.

    [31] Wei Qingquan, Li Yuntao, Ren Lufeng, et al. Zero-mode waveguides: The principle, fabrication and application in detection of single fluorescent molecules[J]. Current Biotechnology, 2015, 5(1): 10-21.

    [32] Martin W E, Srijanto B R, Collier C P, et al. A comparison of single molecule emission in aluminum and gold zero-mode waveguides[J]. Journal of Physical Chemistry A, 2016, 120(34): 6719-6727.

    [33] Castner D G, Ratner B D. Biomedical surface science: Foundations to frontiers[J]. Surface Science, 2002, 500: 28-60.

    [34] Zhao J, Branagan S P, Bohn P W. Single-molecule enzyme dynamics of monomeric sarcosine oxidase in a gold-based zero-mode waveguide[J]. Applied Spectroscopy, 2012, 66(2): 163-169.

    [35] Bediaga I, Gbel C, Méndez-Galain R. On the Dalitz plot approach in nonleptonic charm meson decays[J]. Physical Review Letters, 1997, 78(1): 22-25.

    [36] Halevi P, Krokhin A A, Arriaga J. Photonic crystal optics and homogenization of 2D periodic composites[J]. Physical Review Letters, 1999, 82(4): 719-122.

    [37] Krokhin A A, Halevi P, Arriaga J. Long-wavelength limit (homogenization) for two-dimensional photonic crystals[J]. Physical Review B, 2002, 65(11): 115208.

    [38] Palik E. Handbook of optical constants of solids[M]. New York: Academic Press, 1998: 120.

    Zhou Ting, Wang Tongbiao, Liao Qinghua, Liu Jiangtao, Yu Tianbao, Liu Nianhua. Local Density of States Near Surface of Metal with Periodic Hole Arrays[J]. Laser & Optoelectronics Progress, 2017, 54(7): 72401
    Download Citation