• High Power Laser Science and Engineering
  • Vol. 7, Issue 2, 02000e34 (2019)
Fan Gao1、2、3, Baoxing Xiong1、2、3, Xiang Zhang1、2、3、†,*, and Xiao Yuan1、2、3
Author Affiliations
  • 1School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, China
  • 2Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
  • 3Key Laboratory of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Laboratory of Modern Optical Technologies of Ministry of Education, Suzhou 215006, China
  • show less
    DOI: 10.1017/hpl.2019.22 Cite this Article Set citation alerts
    Fan Gao, Baoxing Xiong, Xiang Zhang, Xiao Yuan. FM-to-AM conversion in angular filtering based on transmitted volume Bragg gratings[J]. High Power Laser Science and Engineering, 2019, 7(2): 02000e34 Copy Citation Text show less
    Frequency spectrum filtered by the TBGs and the FM-to-AM conversion: (a) and (b) TBG-1, (c) and (d) TBG-2, (e) and (f) TBG-3, (g) and (h) TBG-4.
    Fig. 1. Frequency spectrum filtered by the TBGs and the FM-to-AM conversion: (a) and (b) TBG-1, (c) and (d) TBG-2, (e) and (f) TBG-3, (g) and (h) TBG-4.
    Dependence of the distortion criterion on the bandwidth.
    Fig. 2. Dependence of the distortion criterion on the bandwidth.
    Dependence of the Bragg selectivity on the grating period and thickness: (a) $\unicode[STIX]{x1D706}_{0}=1053$ nm, $d=2.5$ mm, $\unicode[STIX]{x1D719}=90^{\circ }$; (b) $\unicode[STIX]{x1D706}_{0}=1053$ nm, $\unicode[STIX]{x1D6EC}=1.5~\unicode[STIX]{x03BC}\text{m}$, $\unicode[STIX]{x1D719}=90^{\circ }$.
    Fig. 3. Dependence of the Bragg selectivity on the grating period and thickness: (a) $\unicode[STIX]{x1D706}_{0}=1053$ nm, $d=2.5$ mm, $\unicode[STIX]{x1D719}=90^{\circ }$; (b) $\unicode[STIX]{x1D706}_{0}=1053$ nm, $\unicode[STIX]{x1D6EC}=1.5~\unicode[STIX]{x03BC}\text{m}$, $\unicode[STIX]{x1D719}=90^{\circ }$.
    Bragg selectivity for TBG-3, TBG-3-O, TBG-4 and TBG-4-O.
    Fig. 4. Bragg selectivity for TBG-3, TBG-3-O, TBG-4 and TBG-4-O.
    Frequency spectrum filtered by optimized TBGs and the FM-to-AM conversion: (a) and (b) TBG-3-O, (c) and (d) TBG-4-O.
    Fig. 5. Frequency spectrum filtered by optimized TBGs and the FM-to-AM conversion: (a) and (b) TBG-3-O, (c) and (d) TBG-4-O.
    Dependence of the distortion criterion on the number of TBGs.
    Fig. 6. Dependence of the distortion criterion on the number of TBGs.
    Schematic diagram demonstrating FM-to-AM conversion on TBGs.
    Fig. 7. Schematic diagram demonstrating FM-to-AM conversion on TBGs.
    Fluctuation of the inclined laser pulse.
    Fig. 8. Fluctuation of the inclined laser pulse.
    Frequency spectra filtered by TBGs and temporal profiles of the laser pulses: (a) and (b) TBG-I, (c) and (d) TBG-II, (e) and (f) TBG-III.
    Fig. 9. Frequency spectra filtered by TBGs and temporal profiles of the laser pulses: (a) and (b) TBG-I, (c) and (d) TBG-II, (e) and (f) TBG-III.
    Cutoff
    PeriodThicknessModulationfrequencyBandwidthDE
    ()(mm)()(mrad)(nm)(%)
    TBG-1 1.88 2.0 258 0.84 4.50100
    TBG-2 1.17 2.5 177 0.41 1.35100
    TBG-3 1.08 3.3 157 0.28 0.87100
    TBG-4 0.97 4.0 129 0.21 0.60100
    Table 1. Structural parameters of TBGs.
    PeriodThicknessModulationBandwidth
    ()(mm)()(nm)
    TBG-3-O 2.62 8.0 65 2.20
    TBG-4-O 3.64 15.0 35 2.28
    Table 2. Optimized structural parameters of TBG-3 and TBG-4.
    Cutoff
    WavelengthPeriodThicknessBandwidthfrequency DE
    (nm)(mm)(nm)(mrad)(%)
    TBG-I 1053 3.49 3.54 8.70 1.28596.9
    TBG-II 1053 1.25 3.83 1.00 0.48794.0
    TBG-III 1053 1.10 4.09 0.75 0.37691.0
    Table 3. Structural parameters of the TBGs in the experiment.
    IncidentAfter TBG-IAfter TBG-IIAfter TBG-III
    pulse (%) (%) (%) (%)
    Experimental results 12.8 13.6 28.4 42.5
    Theoretical results 13.3 26.9 39.6
    Table 4. Results of the distortion criterion $\unicode[STIX]{x1D6FC}$.
    Fan Gao, Baoxing Xiong, Xiang Zhang, Xiao Yuan. FM-to-AM conversion in angular filtering based on transmitted volume Bragg gratings[J]. High Power Laser Science and Engineering, 2019, 7(2): 02000e34
    Download Citation