• Infrared and Laser Engineering
  • Vol. 46, Issue 3, 306003 (2017)
Li Jiyang1、2、*, Tan Yidong1, Wu Ji3, and Zhang Shulian1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/irla201746.0306003 Cite this Article
    Li Jiyang, Tan Yidong, Wu Ji, Zhang Shulian. Birefringence measurement of liquid crystals based on laser feedback effect[J]. Infrared and Laser Engineering, 2017, 46(3): 306003 Copy Citation Text show less
    References

    [1] Konforti N, Wu S T, Marom E. Phase-only modulation with twisted nematic liquid-crystal spatial light modulators[J]. Optics Letters, 1988, 13(3): 251-253.

    [2] Hirabayashi K. Electrically controllable liquid-crystal rotatable wave plate with variable phase retardation[J]. Applied Optics, 2005, 44(17): 3552-3559.

    [3] Ding Haibing, Pang Wenning, Liu Yibao, et al. Photon polarization modulation with liquid crystal variable retarder [J]. Acta Photonica Sinica, 2006, 35(9): 1397-1399. (in Chinese)

    [4] Zhang Ying, Zhao Huijie, Zhou Pengwei, et al. Photoelectric characteristics of liquid crystal variable retarder [J]. Foreign Electronic Measurement Technology, 2009, 28(3): 17-20. (in Chinese)

    [5] Wang Wei, Li Guohua, Xue Dong. A study of voltage-dependent electric-control birefringence of liquid crystal [J]. Acta Optica Sinica, 2004, 24(7): 970-972. (in Chinese)

    [6] Zhang Hongxin, Zhang Jian, Wu Liying, et al. Wavefront correction using liquid crystal spatial light modulator [J], Infrared and Laser Engineering, 2008, 37(6): 1062-1065. (in Chinese)

    [7] Tong Qing, Rong Xing, Zhang Xinyu, et al. Large-area arrayed liquid crystal device for measuring and regulating polarization state of incident light [J]. Infrared and Laser Engineering, 2014, 43(2): 474-478. (in Chinese)

    [8] Pei Yanbo, Yao Fengfeng, Sun Xiudong. Light controlled permanent gratings in nematic liquid crystals [J]. Infrared and Laser Engineering, 2007, 36(2): 261-264. (in Chinese)

    [9] Zhang Zhiyong, Deng Yuanyong, Wang Dongguang, et al. Comparison and analysis of several methods for measuring waveplate retardation [J]. Optics and Precision Engineering, 2007, 15(11): 1678-1685. (in Chinese)

    [10] Hu Jianming, Zeng Aijun, Wang Xiangchao. New method for measuring retardation of quarter-wave plate [J]. Chinese Journal of Lasers, 2006, 33(5): 659-662. (in Chinese)

    [12] Aouadi S M, Mihut D M, Kuruppu M L, et al. Spectroscopic ellipsometry measurements of chromium nitride coatings[J]. Journal of Vacuum Science & Technology A, 2001, 19(6): 2800-2804.

    [14] Zhang Shulian. Principle of Orthogonally Polarized Laser [M]. Beijing: Tsinghua University Press, 2005. (in Chinese)

    [15] Zhang S, Holzapfel W. Orthogonal Polarization in Lasers: Physical Phenomena and Engineering Applications[M]. New York: John Wiley & Sons, 2013.

    [16] Tan Yidong, Zhang Song, Zhang Shulian, et al. Response of microchip solid-state laser to external frequency-shifted feedback and its applications[J]. Scientific Reports, 2013, 3(10): 2912.

    [17] Fei Ligang, Zhang Shulian, Wan Xinjun. Influence of optical feedback from birefringence external cavity on intensity tuning and polarization of laser[J]. Chinese Physics Letters, 2004, 21(10): 1944.

    [18] King P G R, Steward G J. Metrology with an optical maser[J]. New Sci, 1963, 17: 180-182.

    Li Jiyang, Tan Yidong, Wu Ji, Zhang Shulian. Birefringence measurement of liquid crystals based on laser feedback effect[J]. Infrared and Laser Engineering, 2017, 46(3): 306003
    Download Citation