• Journal of Innovative Optical Health Sciences
  • Vol. 10, Issue 6, 1742006 (2017)
Vladimir Y. Zaitsev1、2、*, Alexandr L. Matveyev1、2, Lev A. Matveev1、2, Ekaterina V. Gubarkova2, Alexandr A. Sovetsky1, Marina A. Sirotkina2, Grigory V. Gelikonov1、2, Elena V. Zagaynova2, Natalia D. Gladkova2, and Alex Vitkin2、3
Author Affiliations
  • 1Institute of Applied Physics, Russian Academy of Sciences, Ulyanova Street 46, Nizhny Novgorod 603950, Russia
  • 2Nizhny Novgorod State Medical Academy, 10/1 Minina Square, Nizhny Novgorod 603005, Russia
  • 3University of Toronto and University Health Network, 610 University Avenue, Toronto, ON M5G 2M9, Canada
  • show less
    DOI: 10.1142/s1793545817420068 Cite this Article
    Vladimir Y. Zaitsev, Alexandr L. Matveyev, Lev A. Matveev, Ekaterina V. Gubarkova, Alexandr A. Sovetsky, Marina A. Sirotkina, Grigory V. Gelikonov, Elena V. Zagaynova, Natalia D. Gladkova, Alex Vitkin. Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues[J]. Journal of Innovative Optical Health Sciences, 2017, 10(6): 1742006 Copy Citation Text show less
    References

    [1] K. J. Parker, M. M. Doyley, D. J. Rubens , “Imaging the elastic properties of tissue: The 20 year perspective,” Phys. Med. Biol. 56 (1), R1–R29 (2011).

    [2] L. D. Landau, E. M. Lifshitz , Theory of Elasticity, Course of Theoretical Physics, Elsevier, Amsterdam (1986).

    [3] X. Liang, V. Crecea, S. A. Boppart , “Dynamic optical coherence elastography: A review,” J. Innov. Opt. Health Sci. 3 (04), 221–233 (2010).

    [4] C. Sun, B. Standish, V. X. D. Yang , “Optical coherence elastography: Current status and future applications,” J. Biomed. Opt. 16 (4), 043001 (2011).

    [5] B. F. Kennedy, K. M. Kennedy, D. D. Sampson , “A review of optical coherence elastography: Fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron. 20, 7101217 (2014).

    [6] L. A. Matveev, V. Y. Zaitsev, A. L. Matveev, G. V. Gelikonov, V. M. Gelikonov, A. Vitkin , “Novel methods for elasticity characterization using optical coherence tomography: Brief review and future prospects,” Photonics Lasers Med. 3 (4), 295–309 (2014).

    [7] S. Wang, K. V. Larin , “Optical coherence elastography for tissue characterization: A review,” J. Biophotonics 8 (4), 279–302 (2015).

    [8] K. V. Larin, D. D. Sampson , “Optical coherence elastography–OCT at work in tissue biomechanics,” Biomed. Opt. Express 8 (2), 1172–1202 (2017).

    [9] B. F. Kennedy, P. Wijesinghe, D. D. Sampson , “The emergence of optical elastography in biomedicine,” Nat. Photonics 11 (4), 215–221 (2017).

    [10] S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, M. D. Twa , “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10 (7), 075605 (2013).

    [11] J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. D. Twa, K. V. Larin , “Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo,” Laser Phys. Lett. 11 (6), 065601 (2014).

    [12] M. D. Twa, J. Li, S. Vantipalli, M. Singh, S. Aglyamov, S. Emelianov, K. V. Larin , “Spatial characterization of corneal biomechanical properties with optical coherence elastography after UV crosslinking,” Biomed. Opt. Express 5 (5), 1419–1427 (2014).

    [13] N. Le, S. Song, G. Nabi, R. Wang, Z. Huang , “Quantitative measurement and real-time tracking of high intensity focused ultrasound using phase-sensitive optical coherence tomography: Feasibility study,” Int. J. Hyperthermia 32 (6), 713–722 (2016).

    [14] J. Zhu, Y. Qu, T. Ma, R. Li, Y. Du, S. Huang, K. K. Shung, Q. Zhou, Z. Chen , “Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method,” Opt. Lett. 40, 2099–2102 (2015).

    [15] C. Li, G. Guan, Y. Ling, Y. Hsu, S. Song, J. T. Huang, S. Lang, R. K. Wang, Z. Huang, G. Nabi , “Detection and characterization of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357 (1), 121–128 (2015).

    [16] J. M. Schmitt , “OCT elastography: Imaging microscopic deformation and strain of tissue,” Opt. Express 3 (6), 199–211 (1998).

    [17] K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, B. F. Kennedy , “Quantitative micro-elastography: Imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).

    [18] W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, B. F. Kennedy , “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7 (10), 4139 (2016).

    [19] V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, V. M. Gelikonov, A. Vitkin , “Deformation-induced speckle-pattern evolution and feasibility of correlational speckle tracking in optical coherence elastography,” J. Biomed. Opt. 20 (7), 075006 (2015).

    [20] M. M. Doyley , “Model-based elastography: A survey of approaches to the inverse elasticity problem,” Phys. Med. Biol. 57 (3), R35–R73 (2012).

    [21] W. Allen, P. Wijesinghe, K. Kennedy, L. Chin, D. Sampson, B. Kennedy, “Quantifying tissue stiffness and the effect of nonlinearity using compression optical coherence elastography,” Front. Opt. OSA Technical Digest (online) (Optical Society of America, 2015), Paper FW4E. 7.

    [22] Y. Qiu, F. R. Z. Zaki, N. Chandra, S. A. Chester, X. Liu , “Nonlinear characterization of elasticity using quantitative optical coherence elastography,” Biomed. Opt. Express 7 (11), 4702–4710 (2016).

    [23] L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, A. A. Oberai , “Quantitative compression optical coherence elastography as an inverse elasticity problem,” IEEE J. Sel. Top. Quantum Electron. 22 (3), 277–287 (2016).

    [24] P. Wijesinghe, D. D. Sampson, B. F. Kennedy , “Computational optical palpation: A finite-element approach to microscale tactile imaging using a compliant sensor,” J. R. Soc. Interface 14, 20160878 (2017).

    [25] G. W. C. Kaye, T. H. Laby , Tables of Physical and Chemical Constants, 15th edition. Longman, London (1993).

    [26] K. L. Johnson , Contact Mechanics, Cambridge University Press, Cambridge (1987).

    [27] J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, X. Li , “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13, 111–134 (1991).

    [28] K. M. Kennedy, S. Es’haghian, L. Chin, R. A. McLaughlin, D. D. Sampson, B. F. Kennedy , “Optical palpation: Optical coherence tomography-based tactile imaging using a compliant sensor,” Opt. Lett. 39 (10), 3014–3017 (2014).

    [29] B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, D. D. Sampson , “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3, 1865–1879 (2012).

    [30] V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, E. V. Gubarkova, N. D. Gladkova, A. Vitkin , “Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking,” J. Biophotonics 9 (5), 499–509 (2016).

    [31] V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. A. Sovetsky, A. Vitkin , “Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography,” J. Biomed. Opt. 21 (11), 116005 (2016).

    [32] L. Chin, A. Curatolo, B. F. Kennedy, B. J. Doyle, P. R. T. Munro, R. A. McLaughlin, D. D. Sampson , “Analysis of image formation in optical coherence elastography using a multiphysics approach,” Biomed. Opt. Express 5 (9), 2913 (2014).

    [33] V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, G. V. Gelikonov, V. M. Gelikonov , “A model for simulating speckle-pattern evolution based on close to reality procedures used in spectral-domain OCT,” Laser Phys. Lett. 11 (10), 105601 (2014).

    [34] V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. I. Omelchenko, D. V. Shabanov, O. I. Baum, V. M. Svistushkin, E. N. Sobol , “Optical coherence tomography for visualizing transient strains and measuring large deformations in laser-induced tissue reshaping,” Laser Phys. Lett. 13 (11), 115603 (2016).

    [35] V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. I. Omelchenko, O. I. Baum, V. Gelikonov, S. E. Avetisov, A. V. Bolshunov, V. I. Siplivy, D. V. Shabanov, A. Vitkin, E. N. Sobol , “Optical coherence elastography for strain dynamics measurements in laser correction of cornea shape,” J. Biophotonics 14, 1–15 (2017), http://doi.org/10.1002/jbio.201600291.

    [36] F. A. Duck , Physical Properties of Tissues — A Comprehensive Reference Book, Academic Press, Sheffield, UK (1990).

    [37] A. Delalleau, G. Josse, J.-M. Lagarde, H. Zahouani, J.-M. Bergheau , “A nonlinear elastic behavior to identify the mechanical parameters of human skin in vivo,” Skin Res. Technol. 14 (2), 152–164 (2008).

    [38] A. A. Oberai, N. H. Gokhale, G. Sevan, P. E. Barbone, T. J. Hall, A. M. Sommer, J. Jiang , “Linear and nonlinear elasticity imaging of soft tissue in vivo: Demonstration of feasibility,” Phys. Med. Biol. 54, 1191–1207 (2009).

    [39] D. R. Veronda and R. A. Westman , “Mechanical characterization of skin — finite deformations,” J. Biomech. 3, 111–122 (1970).

    Vladimir Y. Zaitsev, Alexandr L. Matveyev, Lev A. Matveev, Ekaterina V. Gubarkova, Alexandr A. Sovetsky, Marina A. Sirotkina, Grigory V. Gelikonov, Elena V. Zagaynova, Natalia D. Gladkova, Alex Vitkin. Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues[J]. Journal of Innovative Optical Health Sciences, 2017, 10(6): 1742006
    Download Citation