• Matter and Radiation at Extremes
  • Vol. 7, Issue 3, 036902 (2022)
B. Albertazzi1、a), P. Mabey2, Th. Michel1, G. Rigon1, J. R. Marquès1, S. Pikuz3、4, S. Ryazantsev3、4, E. Falize5, L. Van Box Som5, J. Meinecke6, N. Ozaki7、8, G. Gregori6, and M. Koenig1、7
Author Affiliations
  • 1LULI–CNRS, CEA, Sorbonne Universités, École Polytechnique, Institut Polytechnique de Paris, F-91120 Palaiseau cedex, France
  • 2Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
  • 3JIHT-RAS, 13-2 Izhorskaya st., Moscow 125412, Russia
  • 4National Research Nuclear University “MEPhI,” Moscow 115409, Russia
  • 5CEA-DAM-DIF, F-91297 Arpajon, France
  • 6Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
  • 7Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
  • 8Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan
  • show less
    DOI: 10.1063/5.0068689 Cite this Article
    B. Albertazzi, P. Mabey, Th. Michel, G. Rigon, J. R. Marquès, S. Pikuz, S. Ryazantsev, E. Falize, L. Van Box Som, J. Meinecke, N. Ozaki, G. Gregori, M. Koenig. Triggering star formation: Experimental compression of a foam ball induced by Taylor–Sedov blast waves[J]. Matter and Radiation at Extremes, 2022, 7(3): 036902 Copy Citation Text show less
    References

    [1] D. D.Ryutov, R. P.Drake, B. A.Remington. Experimental astrophysics with high power lasers and Z pinches. Rev. Mod. Phys., 78, 755(2006).

    [2] G. P.Garmire, E. D.Feigelson, K. V.Getman, M. A.Kuhn, A.Sicilia-Aguilar, P. S.Broos. The Elephant Trunk Nebula and the Trumpler 37 cluster: Contribution of triggered star formation to the total population of an HII region. Mon. Not. R. Astron. Soc., 426, 2917(2012).

    [3] E. C.Ostriker, C. F.McKee. Theory of star formation. Annu. Rev. Astron. Astrophys., 45, 565(2007).

    [4] S.Lizano, F. C.Adams, F. H.Shu. Star formation in molecular clouds: Observation and theory. Annu. Rev. Astron. Astrophys., 25, 23(1987).

    [5] M. R.Krumholz. Star formation in molecular clouds. AIP Conf. Proc., 1386, 9(2011).

    [6] G.Dubner, D. C.Ellison, D.Castro, P.Slane, A.Bykov. Supernova remnants interacting with molecular clouds: X-ray and gamma-ray signatures. Space Sci. Rev., 188, 187(2015).

    [7] S.Li, A.Frank, E. G.Blackman. Triggered star formation and its consequences. Mon. Not. R. Astron. Soc., 444, 2884(2014).

    [8] E. A.Myhill, H. A. T.Vanhala, S. A.Keiser, S. I.Ipatov, A. P.Boss. Simultaneous triggered collapse of the presolar dense cloud core and injection of short-lived radioisotopes by a supernova shock wave. Astrophys. J., 686, L119(2008).

    [9] J.Castor, R.McCray, R.Weaver. Interstellar bubbles. Astrophys. J., 200, L107(1975).

    [10] R.Weaver, R.McCray, R.Moore, P.Shapiro, J.Castor. Interstellar bubbles. II. Structure and evolution. Astrophys. J., 218, 377(1977).

    [11] S. A.Keiser, A. P.Boss. Who pulled the trigger: A supernova or an asymptotic giant branch star. Astrophys. J., 717, L1(2010).

    [12] E.Scannapieco, F. X.Timmes, L.Pan, S. J.Desch. Mixing of clumpy supernova ejecta into molecular clouds. Astrophys. J., 756, 102(2012).

    [13] S. A.Keiser, A. P.Boss. Triggering collapse of the presolar dense cloud core and injecting short-lived radioisotopes with a shock wave. II. Varied shock wave and cloud core parameters. Astrophys. J., 770, 51(2013).

    [14] P. R.Woodward. Shock-driven implosion of interstellar gas clouds and star formation. Astrophys. J., 207, 484(1976).

    [15] J.Nittmann, S. A. E. G.Falle, P. H.Gaskell. The dynamical destruction of shocked gas clouds. Mon. Not. R. Astron. Soc., 201, 833(1982).

    [16] P.Colella, R. I.Klein, C. F.McKee. On the hydrodynamic interaction of shock waves with interstellar clouds. I. Nonradiative shocks in small clouds. Astrophys. J., 420, 213(1994).

    [17] G.Gregori, T. W.Jones, D.Ryu, F.Miniati. Three-dimensional magnetohydrodynamic numerical simulations of cloud-wind interactions. Astrophys. J., 543, 775(2000).

    [18] A. M.Zhang, X. Y.Can, Z. F.Meng, B.Wang. Study on the pressure characteristics of shock wave propagating across multilayer structures during underwater explosion. Shock Vib., 2019, 9026214.

    [19] J. M.Martinez Val, S.Eliezer. The comeback of shock waves in inertial fusion energy. Laser Part. Beams, 29, 175(2011).

    [20] L.Van Box Som, S.Pikuz, S.Ryazantsev, E.Falize, P.Mabey, J.-R.Marquès, N.Ozaki, G.Rigon, J.Meinecke, T.Michel, M.Koenig, G.Gregori, B.Albertazzi, A.Ciardi. Experimental characterization of the interaction zone between counter-propagating Taylor Sedov blast waves. Phys. Plasmas, 27, 022111(2020).

    [21] M.V?lschow, R.Banerjee, B.K?rtgen. Star formation in evolving molecular clouds. Astron. Astrophys., 605, A97(2017).

    [22] E. P. G.Johansson, U.Ziegler. Radiative interaction of shocks with small interstellar clouds as a pre-stage to star formation. Astrophys. J., 766, 45(2013).

    [23] C. F.McKee, D. J.Hollenbach, G. C.Seab, A. G. G. M.Tielens. The structure of time-dependent interstellar shocks and grain destruction in the interstellar medium. Astrophys. J., 318, 674(1987).

    [24] K.Yirak, A.Frank, A. J.Cunningham. Self-convergence of radiatively cooling clumps in the interstellar medium. Astrophys. J., 722, 412(2010).

    [25] J.Kane, B. A.Remington, R. P.Drake, D.Ryutov, W. M.Wood‐Vasey, E.Liang. Similarity criteria for the laboratory simulation of supernova hydrodynamics. Astrophys. J., 518, 821(1999).

    [26] M. A.Dopita, R. S.Sutherland. Cooling functions for low-density astrophysical plasmas. Astrophys. J., 88, 253(1993).

    [27] C.Michaut, é.Falize, S.Bouquet. Similarity properties and scaling laws of radiation hydrodynamic flows in laboratory astrophysics. Astrophys. J., 730, 96(2011).

    [28] J.Mackey, J.Yates, H.Dhanoa. Pressure-driven fragmentation of multiphase clouds at high redshift. Mon. Not. R. Astron. Soc., 444, 2085(2014).

    [29] Y. H.Chu, R. M.Williams. Supernova remnants in the magellanic clouds. VI. The DEM L316 supernova remnants. Astrophys. J., 635, 1077(2005).

    [30] K.Bockasten. Transformation of observed radiances into radial distribution of the emission of a plasma. J. Opt. Soc. Am., 51, 943(1961).

    [31] J. J.MacFarlane, P.Wang, I. E.Golovkin, N. A.Pereyra, P. R.Woodruff. SPECT3D—A multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output. High Energy Density Phys., 3, 181(2007).

    [32] A. S.Hassani, B. T.Chiad, L. T.Ali. Determination of velocity and radius of supernova remnant after 1000 yrs of explosion. Int. J. Astron. Astrophys., 5, 125(2015).

    [33] A.Dizière. Astrophysique de laboratoire avec les lasers de haute énergie et de haute puissance: Des chocs radiatifs aux jets d’étoiles jeunes(2012).

    [34] Y.Aglitskiy, M.Rabec, N.Ozaki, A. Y.Faenov, B.Loupias, L. E.Gloahec, A.Benuzzi-Mounaix, M.Koenig, F.Perez, T. A.Pikuz. High efficient, easily spectrally tunable X-ray backlighting for the study of extreme matter states. Laser Part. Beams, 27, 601(2009).

    [35] S.Simond, C.Riconda, H.Pépin, J.Fuchs, B.Albertazzi, S.Nitsche, J.Albrecht, S. N.Chen, D.Da Silva, E.Veuillot, J.Billette, T. E.Cowan, L.Romagnagni, B.Hirardin, M.Nakatsutsumi, S.Dittrich, T.Burris-Mog, J.Béard, O.Portugall, F.Kroll, T.Vinci, T.Herrmannsd?rfer, A.Ciardi, H.-P.Schlenvoigt. Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields. Rev. Sci. Instrum., 84, 043505(2013).

    [36] G.Gregori, F.Miniati, D.Ryu, T. W.Jones. Enhanced cloud disruption by magnetic field interaction. Astrophys. J., 527, L113(1999).

    [37] G.Rigon, J.-R.Marquès, B.Albertazzi, F.Kroll, F.-E.Brack, P.Perez-Martin, M.Koenig, U.Schramm, E.Falize, P.Mabey, C. A. J.Palmer, J.Topp-Mugglestone, G.Gregori, K.Falk, T. E.Cowan. Laboratory study of bilateral supernova remnants and continuous MHD shocks. Astrophys. J., 896, 167(2020).

    B. Albertazzi, P. Mabey, Th. Michel, G. Rigon, J. R. Marquès, S. Pikuz, S. Ryazantsev, E. Falize, L. Van Box Som, J. Meinecke, N. Ozaki, G. Gregori, M. Koenig. Triggering star formation: Experimental compression of a foam ball induced by Taylor–Sedov blast waves[J]. Matter and Radiation at Extremes, 2022, 7(3): 036902
    Download Citation