• Photonic Sensors
  • Vol. 2, Issue 3, 259 (2012)
Stefan FORSTNER, Joachim KNITTEL, Eoin SHERIDAN, Jon D. SWAIM, Halina RUBINSZTEIN-DUNLOP, and Warwick P. BOWEN*
Author Affiliations
  • School of Mathematics and Physics, University of Queensland, St Lucia, Queensland 4072, Australia
  • show less
    DOI: 10.1007/s13320-012-0067-2 Cite this Article
    Stefan FORSTNER, Joachim KNITTEL, Eoin SHERIDAN, Jon D. SWAIM, Halina RUBINSZTEIN-DUNLOP, Warwick P. BOWEN. Sensitivity and Performance of Cavity Optomechanical Field Sensors[J]. Photonic Sensors, 2012, 2(3): 259 Copy Citation Text show less
    References

    [1] A. Edelstein, “Advances in magnetometry,” Journal of Physics: Condensed Matter, vol. 19, no. 16, pp. 165217, 2007.

    [2] M. Diaz-Michelena, “Small magnetic sensors for space applications,” Sensors, vol. 9, no. 4, pp. 2271-2288, 2009.

    [3] P. Ripka and M. Janosek, “Advances in magnetic field sensors,” IEEE Sensors Journal, vol. 10, no. 6, pp. 1108-1116, 2010.

    [4] F. Bucholtz, D. M. Dagenais, and K. P. Koo, “High-frequency fibre-optic magnetometer with 70 fT/ (Hz) resolution,” Electronics Letters, vol. 25, no. 25, pp. 1719-1721, 1989.

    [5] H. J. Mamin, M. Poggio, C. L. Degen, and D. Rugar, “Nuclear magnetic resonance imaging with 90-nm resolution,” Nature Nanotechnology, vol. 2, no. 5, pp. 301-306, 2007.

    [6] V. Pizzella, S. D. Penna, C. D. Gratta, and G. L. Romani, “SQUID systems for biomagnetic imaging,” Superconductor Science and Technology, vol. 14, no. 7, pp. R79-R114, 2001.

    [7] A. M. Chang, H. D. Hallen, L. Harriott, H. F. Hess, H. L. Kao, J. Kwo, et al., “Scanning Hall probe microscopy,” Applied Physics Letters, vol. 61, no. 16, pp. 1974-1976, 1992.

    [8] H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Applied Physics Letters, vol. 97, no. 15, pp. 151110-1-151110-3, 2010.

    [9] J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, et al., “High-sensitivity diamond magnetometer with nanoscale resolution,” Nature Physics, vol. 4, no. 10, pp. 810-816, 2008.

    [10] M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E. Sadler, and D. M. Stamper-Kurn, “High-resolution magnetometry with a spinor Bose-Einstein condensate,” Physical Review Letters, vol. 98, no. 20, pp. 200801, 2007.

    [11] M. V. Romalis and H. B. Dang, “Atomic magnetometers for materials characterization,” Materials Today, vol. 14, no. 6, pp. 258-262, 2011.

    [12] S. Xu, V. V. Yashchuk, M. H. Donaldson, S. M. Rochester, D. Budker, and A. Pines, “Magnetic resonance imaging with an optical atomic magnetometer,” in Proceedings of the National Academy of Sciences, vol. 103, no. 34, pp. 12668-12671, 2006.

    [13] M. P. Ledbetter, T. Theis, J. W. Blanchard, H. Ring, P. Ganssle, S. Appelt, et al., “Near-zero-field nuclear magnetic resonance,” Physical Review Letters, vol. 107, no. 10, pp. 107601, 2011.

    [14] J. Jang, R. Budakian, and Y. Maeno, “Phase-locked cantilever magnetometry,” Applied Physics Letters, vol. 98, no. 13, pp. 132510, 2011.

    [15] L. S. Bouchard, V. M. Acosta, E. Bauch, and D. Budker, “Detection of the Meissner effect with a diamond magnetometer,” New Journal of Physics, vol. 13, pp. 025017, 2011.

    [16] D. Budker and M. Romalis, “Optical magnetometry,” Nature Physics, vol. 3, no. 4, pp. 227-234, 2007.

    [17] M. H m l inen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography - theory, instrumentation, and applications to noninvasive studies of the working human brain,” Reviews of Modern Physics, vol. 65, no. 2, pp. 413-497, 1993.

    [18] S. Palva and J. M. Palva, “New vistas for alpha-frequency band oscillations,” Trends in Neurosciences, vol. 30, no. 4, pp. 150-158, 2007.

    [19] S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, et al., “Cavity optomechanical magnetometer,” Physics Review Letters, vol. 108, no. 12, pp. 120801, 2012.

    [20] S. Forstner, J. Knittel, H. Rubinsztein-Dunlop, and W. P. Bowen, “Model of a microtoroidal magnetometer,” in Proc. SPIE, vol. 8439, pp. 84390U, 2012.

    [21] J. Knittel, S. Forstner, J. Swaim, H. Rubinsztein-Dunlop, and W. P. Bowen, “Sensitivity of cavity optomechanical field sensors,” in Proc. SPIE, vol. 8351, pp. 83510H, 2012.

    [22] T. Corbitt and N. Mavalvala, “Quantum noise in gravitational-wave interferometers,” Journal of Optics B: Quantum and Semiclassical Optics, vol. 6, no. 8, pp. S675-S683, 2004.

    [23] V. B. Braginsky, Measurement of weak forces in physics experiments. Chicago: University of Chicago Press. 1977.

    [24] T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Optics Express, vol. 15, no. 25, pp. 17172-17205, 2007.

    [25] T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science, vol. 321, no. 5893, pp. 1172-1176, 2008.

    [26] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, et al., “Sideband cooling of micromechanical motion to the quantum ground state,” Nature, vol. 475, no. 7356, pp. 359-363, 2011.

    [27] J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groeblacher, et al., “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature, vol. 478, no. 7367, pp. 89-92, 2011.

    [28] A. Schliesser, G. Anetsberger, R. Riviere, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New Journal of Physics, vol. 10, no. 9, pp. 095015, 2008.

    [29] C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring nanomechanical motion with a microwave cavity interferometer,” Nature Physics, vol. 4, no. 7, pp. 555-560, 2008.

    [30] A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Physical Review Letters vol. 108, no. 3, pp. 033602, 2012.

    [31] J. Liu, K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl, et al., “High-Q optomechanical GaAs nanomembranes,” Applied Physics Letters, vol. 99, no. 24, pp. 243102, 2011.

    [32] H. Cai and A. W. Poon, “Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator,” Optics Letters, vol. 36, no. 21, pp. 4257-4259, 2011.

    [33] C. P. Dietrich, M. Lange, C. Sturm, R. Schmidt-Grund, and M. Grundmann,“One- and two-dimensional cavity modes in ZnO microwires,” New Journal of Physics, vol. 13, no. 10, pp. 103021-103029, 2011.

    [34] D. Kleckner, B. Pepper, E. Jeffrey, P. Sonin, S. M. Thon, and D. Bouwmeester, “Optomechanical trampoline resonators,” Optics Express, vol. 19, no. 20, pp. 19708-19716, 2011.

    [35] A. G. Kuhn, M. Bahriz, O. Ducloux, C. Chartier, O. L. Traon, T. Briant, et al., “A micropillar for cavity optomechanics,” Applied Physics Letters, vol. 99, no. 12, pp. 121103, 2011.

    [36] I. Wilson-Rae, C. Galland, W. Zwerger, and A. Imamoglu, “Nano-optomechanics with localized carbon-nanotube excitons,” arXiv: 0911.1330v1 [cond-mat.mes-hall], 2009.

    [37] B. P. Abbott, R. Abbott, R. Adhikari, P. Ajith, B. Allen, G Allen, et al., “LIGO: the laser interferometer gravitational-wave observatory,” Reports on Progress in Physics, vol. 72, no. 7, pp. 076901, 2009.

    [38] L. D. Landau and E. M. Lifshitz, Theory of elasticity (Course of Theoretical Physics ), 2nd edition, vol. 7. Oxford: Pergamon Press, 1970.

    [39] D. T. Gillespie, “The mathematics of Brownian motion and Johnson noise,” American Journal of Physics, vol. 64, no. 3, pp. 225-240, 1996.

    [40] A. Schliesser, “Cavity optomechanics and optical frequency comb generation with silica whispering-gallery-mode microresonators,” Ph.D. dissertation, Physik. Department, Ludwig-Maximilians-Universit t, 2009.

    [41] V. B. Braginsky, S. E. Strigin, and V. P. Vyatchanin, “Parametric oscillatory instability in Fabry-Perot interferometer,” Physics Letters A, vol. 287, no. 5-6, pp. 331-338, 2001.

    [42] M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, vol. 7, no. 1, pp. 107-116, 1999.

    [43] V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Physical Review A, vol. 63, no. 2, pp. 023812, 2001.

    [44] V. B. Braginsky and F. Y. Khalili, Quantum Measurement. Cambridge: Cambridge University Press, 1992.

    [45] D. Maser, S. Pandey, H. Ring, M. P. Ledbetter, S. Knappe, J. Kitching, et al., “Note: detection of a single cobalt microparticle with a microfabricated atomic magnetometer,” Review of Scientific Instruments, vol. 82, no. 8, pp. 086112, 2011.

    [46] J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton, et al., “High-resolution scanning squid microscope,” Applied Physics Letters, vol. 66, no. 9, pp. 1138-1140, 1995.

    [47] M. I. Faley, U. Poppe, K. Urban, D. N. Paulson, and R. L. Fagaly, “A new generation of the HTS multilayer dc-squid magnetometers and gradiometers,” Journal of Physics: Conference Series, vol. 43, no. 1, pp. 1199-1202, 2006.

    [48] F. Baudenbacher, L. E. Fong, J. R. Holzer, and M. Radparvar, “Monolithic low-transition temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples,” Applied Physics Letters, vol. 82, no. 20, pp. 3487-3489, 2003.

    [49] A. Sandhu, A. Okamoto, I. Shibasaki, and A. Oral, “Nano and micro Hall-effect sensors for room-temperature scanning Hall probe microscopy,” Microelectronic Engineering, vol. 73-74, pp. 524-528, 2004.

    [50] A. Sandhu, K. Kurosawa, M. Dede, and A. Oral, “50 nm Hall sensors for room temperature scanning Hall probe microscopy,” Japanese Journal of Applied Physics, vol. 43, no. 2, pp. 777-778, 2004.

    [51] J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, et al., “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature, vol. 455, no. 7213, pp. 644-647, 2008.

    [52] G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, et al., “Ultralong spin coherence time in isotopically engineered diamond,” Nature Materials, vol. 8, no. 5, pp. 383-387, 2009.

    [53] S. X. Dong, J. F. Li, and D. Viehland, “Ultrahigh magnetic field sensitivity in laminates of terfenol-D and Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals,” Applied Physics Letters, vol. 83, no. 11, pp. 2265-2267, 2003.

    [54] R. Osiander, S. A. Ecelberger, R. B. Givens, D. K. Wickenden, J. C. Murphy, and T. J. Kistenmacher, “A microelectromechanical-based magnetostrictive magnetometer,” Applied Physics Letters, vol. 69, no. 19, pp. 2930-2931, 1996.

    [55] K. Vervaeke, E. Simoen, G. Borghs, and V. V. Moshchalkov, “Size dependence of microscopic Hall sensor detection limits,” Review of Scientific Instruments, vol. 80, no. 7, pp. 074701-1-074701-7, 2009.

    [56] M. S. Grinolds, P. Maletinsky, S. Hong, M. D. Lukin, R. L. Walsworth, and A. Yacoby, “Quantum control of proximal spins using nanoscale magnetic resonance imaging,” Nature Physics, vol. 7, no. 9, pp. 687-692, 2011.

    [57] L. M. Pham, D. L. Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, et al., “Magnetic field imaging with nitrogen-vacancy ensembles,” New Journal of Physics, vol. 13, pp. 045021, no. 4, 2011.

    [58] R. S. Schoenfeld and W. Harneit, “Real time magnetic field sensing and imaging using a single spin in diamond,” Physical Review Letters, vol. 106, no. 3, pp. 030802, 2011.

    [59] J. C. Allred, R. N. Lyman, W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Physical Review Letters, vol. 89, no. 13, pp. 130801, 2002.

    Stefan FORSTNER, Joachim KNITTEL, Eoin SHERIDAN, Jon D. SWAIM, Halina RUBINSZTEIN-DUNLOP, Warwick P. BOWEN. Sensitivity and Performance of Cavity Optomechanical Field Sensors[J]. Photonic Sensors, 2012, 2(3): 259
    Download Citation