• Infrared and Laser Engineering
  • Vol. 51, Issue 6, 20220237 (2022)
Can Li, Pu Zhou*, Pengfei Ma, Man Jiang, Yue Tao, and Liu Liu
Author Affiliations
  • College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/IRLA20220237 Cite this Article
    Can Li, Pu Zhou, Pengfei Ma, Man Jiang, Yue Tao, Liu Liu. Research progress of single-frequency fiber laser technology (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20220237 Copy Citation Text show less
    References

    [1] Yang Z, Li C, Xu S, et al. SingleFrequency Fiber Lasers [M]Optical Fiber Communications Repts (OFCR, volume 8). Singape: Springer Nature Singape Pte Ltd., 2019.

    [2] S Fu, W Shi, Y Feng, et al. Review of recent progress on single-frequency fiber lasers. Journal of Optical Society of America B, 34, A49-A62(2017).

    [3] C Yang, X Cen, S Xu, et al. Research progress of single-frequency fiber laser. Acta Optica Sinica, 41, 0114002(2021).

    [4] P Ma, H Chang, Y Ma, et al. 7.1 kW coherent beam combining system based on a seven-channel fiber amplifier array. Optics & Laser Technology, 140, 107016(2021).

    [5] N Bode, F Meylahn, B Willke. Sequential high power laser amplifiers for gravitational wave detection. Optics Express, 28, 29469-29478(2020).

    [6] V Vercesi, D Onori, F Laghezza, et al. Frequency-agile dual-frequency lidar for integrated coherent radar-lidar architectures. Optics Letters, 40, 1358-1361(2015).

    [7] Y Ma, X Wang, J Leng, et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique. Optics Letters, 36, 951-953(2011).

    [8] Davide Castelvecchi. Gravitational-wave observatory LIGO set to double its detecting power. Nature, 566, 305(2019).

    [9] Z Li, H Duan, X Huang, et al. Design and performance test of the spaceborne laser in the TianQin-1 mission. Optics & Laser Technology, 141, 107155(2021).

    [10] J Wang, Y Hou, Q Zhang, et al. High-power, high signal-to-noise ratio single-frequency 1 µm Brillouin all-fiber laser. Optics Express, 23, 28978-28984(2015).

    [11] M Chen, Z Meng, J Wang, et al. Strong linewidth reduction by compact Brillouin/erbium fiber laser. IEEE Photonics Journal, 6, 1-8(2014).

    [12] C Shi, Q Sheng, S Fu, et al. Power scaling and spectral linewidth suppression of hybrid Brillouin/thulium fiber laser. Optics Express, 28, 2948-2955(2020).

    [13] J Gu, Y Yang, M Liu, et al. A switchable and stable single-longitudinal-mode, dual-wavelength erbium-doped fiber laser assisted by Rayleigh backscattering in tapered fiber. Journal of Applied Physics, 118, 103107(2015).

    [14] T Zhu, B Zhang, L Shi, et al. Tunable dual-wavelength fiber laser with ultra-narrow linewidth based on Rayleigh backscattering. Optics Express, 24, 1324(2016).

    [15] H Shawki, H Kotb, A Khalil. Single-longitudinal-mode broadband tunable random laser. Optics Letters, 42, 3247(2017).

    [16] Q Wang, H Song, X Wang, et al. Experiments and analysis of tunable monolithic 1-m single-frequency fiber lasers with loop mirror filters. Optics Communications, 410, 884(2018).

    [17] K Wang, B Lu, X Qi, et al. Wavelength-tunable single-frequency ytterbium-doped fiber laser based on a double-circulator interferometer. Laser Physics Letters, 16, 015104(2019).

    [18] T Yin, Y Song, X Jiang, et al. 400 mW narrow linewidth single-frequency fiber ring cavity laser in 2 μm waveband. Optics Express, 27, 15794(2019).

    [19] S Lim, J Yoo, S Kim. Widely tunable watt-level single-frequency Tm-doped fiber ring laser as pump for Mid-IR frequency generation. IEEE Photonics Journal, 8, 1502006(2016).

    [20] K Wang, Z Wen, H Chen, et al. Single-frequency all-polarization-maintaining ytterbium-doped bidirectional fiber laser. Optics Letters, 46, 404(2021).

    [21] B Yin, S Feng, Z Liu, et al. Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter. Optics Express, 22, 22528(2014).

    [22] B Yin, Z Liu, S Feng, et al. Stable single-polarization single-longitudinal-mode linear cavity erbium-doped fiber laser based on structured chirped fiber Bragg grating. Applied Optics, 54, 6(2015).

    [23] F Yan, W Peng, S Liu, et al. Dual-wavelength single-longitudinal-mode Tm-doped fiber laser using PM-CMFBG. IEEE Photonics Technology Letters, 27, 951(2015).

    [24] Q Wen, Z Sun, Y Gan, et al. Sub-kilohertz linewidth fiber laser by using Bragg grating filters. Applied Optics, 60, 4299(2021).

    [25] B Lu, L Yuan, X Qi, et al. MoS2 saturable absorber for single frequency oscillation of highly Yb-doped fiber laser. Chinese Optics Letters, 14, 071404(2016).

    [26] X Liu, L Ji, F Zhu, et al. Linear-cavity-based single frequency fiber laser with a loop mirror and Ti2CTx quantum dots. Optical Materials, 122, 111686(2021).

    [27] Z Wei, S Chen, J Ding, et al. Recent advance in tunable single-frequency fiber laser based on two-dimensional materials. Frontiers of Physics, 8, 580602(2021).

    [28] P Fu, X Feng, B Lu, et al. Switchable dual-wavelength SLM narrow linewidth fiber laser based on nonlinear amplifying loop mirror. Optics & Laser Technology, 98, 56(2018).

    [29] S Xu, Z Yang, W Zhang, et al. 400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser. Optics Letters, 36, 3708(2011).

    [30] P Hofmann, C Voigtlander, S Nolte, et al. 550-mW output power from a narrow linewidth all-phosphate fiber laser. Journal of Lightwave Technology, 31, 756(2013).

    [31] X Guan, C Yang, T Qiao, et al. High-efficiency sub-watt in-band-pumped single-frequency DBR Tm3+-doped germanate fiber laser at 1950 nm. Optics Express, 26, 6817(2018).

    [32] S Fu, X Zhu, J Zong, et al. Diode-pumped 1.15 W linearly polarized single-frequency Yb3+-doped phosphate fiber laser. Optics Express, 29, 30637(2021).

    [33] L Zhang, J Zhang, Q Sheng, et al. Watt-level 1.7-μm single-frequency thulium-doped fiber oscillator. Optics Express, 29, 27048(2021).

    [34] J Zhang, Q Sheng, L Zhang, et al. 2.56 W single-frequency all-fiber oscillator at 1720 nm. Advanced Photonics Research, 3, 2100256(2022).

    [35] C Robin, I Dajani, B Pulford. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power. Optics Letters, 39, 666(2014).

    [36] L Huang, H Wu, R Li, et al. 414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier. Optics Letters, 41, 1(2017).

    [37] W Lai, P Ma, W Liu, et al. 550 W single frequency fiber amplifiers emitting at 1030 nm based on a tapered Yb-doped fiber. Optics Express, 28, 20908(2020).

    [38] Y An, Z Pan, H Yang, et al. 400-W single-mode single-frequency laser output from homemade tapered fiber. Acta Physica Sinica, 70, 204024(2021).

    [39] C Shi, S Fu, X Deng, et al. 435 W single-frequency all-fiber amplifier at 1064 nm based on cascaded hybrid active fibers. Optics Communications, 502, 127428(2022).

    [40] M Xue, C Gao, L Niu, et al. A 51.3 W, sub-kHz-linewidth linearly polarized all-fiber laser at 1560 nm. Laser Physics, 30, 035104(2020).

    [41] X Guan, Q Zhao, W Lin, et al. High-efficiency and high-power single-frequency fiber laser at 1.6 μm based on cascaded energy-transfer pumping. Photonics Research, 8, 414(2020).

    [42] X Wang, X Jin, W Wu, et al. 310-W single frequency Tm-doped all-Fiber MOPA. IEEE Photonics Technology Letters, 27, 677(2015).

    [43] X Guan, C Yang, Q Gu, et al. 316 W high-brightness narrow-linewidth linearly-polarized all-fiber single frequency-laser at 1950 nm. Applied Physics Express, 14, 112004(2021).

    [44] C Yang, Q Zhao, Z Feng, et al. 1120 nm kHz-linewidth single-polarization single-frequency Yb-doped phosphate fiber laser. Optics Express, 24, 29794(2016).

    [45] P Honzatko, Y Baravets, A Myakalwar. Single-frequency fiber laser based on a fiber ring resonator filter tunable in a broad range from 1023 nm to 1107 nm. Optics Letters, 43, 1339(2018).

    [46] Y Tao, S Zhang, M Jiang, et al. High power and high efficiency single-frequency 1030 nm DFB fiber laser. Optics & Laser Technology, 145, 107519(2022).

    [47] Y Tao, M Jiang, C Li, et al. Low threshold 1150 nm single-polarization single-frequency Yb-doped DFB fiber laser. Optics Letters, 46, 3705(2021).

    [48] L Huang, C Yang, T Tan, et al. Sub-kHz-linewidth wavelength-tunable single-frequency ring-cavity fiber laser for C- and L-band operation. Journal of Lightwave Technology, 39, 4794(2021).

    [49] W Walasik, D Traoré, A Amavigan, et al. 2-μm narrow linewidth all-fiber DFB fiber Bragg grating lasers for Ho-and Tm-doped fiber-amplifier applications. Journal of Lightwave Technology, 39, 5096(2021).

    [50] X Cen, X Guan, C Yang, et al. Short-wavelength, in-band-pumped single-frequency DBR Tm3+-doped germanate fiber laser at 1.7 μm. IEEE Photonics Technology Letters, 33, 350(2021).

    [51] M Mollaee, X Zhu, J Zong, et al. Single-frequency blue laser fiber amplifier. Optics Letters, 43, 423(2018).

    [52] Q Fang, Y Xu, S Fu, et al. Single-frequency distributed Bragg reflector Nd doped silica fiber laser at 930 nm. Optics Letters, 41, 1829(2016).

    [53] S Fu, X Zhu, J Zong, et al. Single-frequency Nd3+-doped phosphate fiber laser at 915 nm. Journal of Lightwave Technology, 39, 1808(2021).

    [54] X Zhu, J Zong, A Miller, et al. Single-frequency Ho3+-doped ZBLAN fiber laser at 1200 nm. Optics Letters, 37, 4185(2012).

    [55] M Bernier, V Michaud-Belleau, S Levasseur, et al. All-fiber DFB laser operating at 2.8 μm. Optics Letters, 40, 81(2015).

    [56] D Hudson, J Williams, J Withford, et al. Single-frequency fiber laser operating at 2.9 μm. Optics Letters, 38, 2388(2013).

    [57] S Loranger, V Karpov, G Schinn, et al. Single-frequency low-threshold linearly polarized DFB Raman fiber lasers. Optics Letters, 42, 3864(2017).

    [58] J Wu, X Zhu, H Wei, et al. Power scalable 10 W 976 nm single-frequency linearly polarized laser source. Optics Letters, 43, 951(2018).

    [59] B Gouhier, G Guiraud, S Rota-Rodrigo, et al. 25 W single-frequency, low noise fiber MOPA at 1120 nm. Optics Letters, 43, 308(2018).

    [60] B Gouhier, C Dixneuf, A Hilico, et al. Low Intensity noise high-power tunable fiber-based laser around 1007 nm. Journal of Lightwave Technology, 37, 3539(2019).

    [61] B Gouhier, S Rota-Rodrigo, G Guiraud, et al. Low-noise single-frequency 50 W fiber laser operating at 1013 nm. Laser Physics Letters, 16, 045103(2019).

    [62] B Yao, Q Chen, Y Chen, et al. 280 mHz linewidth DBR fiber laser based on PDH frequency stabilization with ultrastable cavity. Chinese Journal of Lasers, 48, 0501014(2021).

    [63] Q Zhao, Z Zhang, B Wu, et al. Noise-sidebands-free and ultra-low-RIN 1.5 μm single-frequency fiber laser towards coherent optical detection. Photonics Research, 6, 326(2018).

    [64] Q Zhao, K Zhou, Z Wu, et al. Near quantum-noise limited and absolute frequency stabilized 1083 nm single-frequency fiber laser. Optics Letters, 43, 42(2018).

    [65] Z Qi, T Yin, X Jiang, et al. Narrow-linewidth high-efficiency single-frequency ytterbium-doped fiber laser with highly linear polarization at 1064 nm. Applied Optics, 60, 2833(2021).

    [66] L Hao, X Wang, K Jia, et al. Narrow-linewidth single-polarization fiber laser using non-polarization optics. Optics Letters, 46, 3769(2021).

    [67] H Liu, Q Lu, S Wei, et al. Long-term stable 850-Hz linewidth single-longitudinal-mode ring cavity fiber laser using polari-zation-maintaining fiber. Applied Physics B, 126, 106(2020).

    [68] C Yang, S Xu, D Chen, et al. 52 W kHz-linewidth low-noise linearly-polarized all-fiber single-frequency MOPA laser. Journal of Optics, 18, 055801(2016).

    [69] F Wellmann, M Steinke, F Meylahn, et al. High power, single-frequency, monolithic fiber amplifier for the next generation of gravitational wave detectors. Optics Express, 27, 28523(2019).

    [70] C Dixneuf, G Guiraud, Y Bardin, et al. Ultra-low intensity noise, all fiber 365 W linearly polarized single frequency laser at 1064 nm. Optics Express, 28, 10960(2020).

    [71] D Darwich, Y Bardin, M Goeppner, et al. Ultralow-intensity noise, 10 W all-fiber single-frequency tunable laser system around 1550 nm. Applied Optics, 60, 8550(2021).

    [72] Q Zhang, Y Hou, X Wang, et al. 5 W ultra-low-noise 2 µm single-frequency fiber laser for next-generation gravitational wave detectors. Optics Letters, 45, 4911(2020).

    [73] Y Hou, Q Zhang, S Qi, et al. 1.5 μm polarization-maintaining dual-wavelength single-frequency distributed Bragg reflection fiber laser with 28 GHz stable frequency difference. Optics Letters, 43, 1383(2018).

    [74] A Budarnykh, A Vladimirskaya, I Lobach, et al. Broad-range self-sweeping single-frequency linearly polarized Tm-doped fiber laser. Optics Letters, 43, 5307(2018).

    [75] E Kashirina, I Lobach, Kablukov S and. Single-frequency self-sweeping Nd-doped fiber laser. Optics Letters, 44, 2252(2019).

    [76] K Li, H Deng, C Yang, et al. Multi-wavelength, passively Q-switched, single-frequency fiber laser. IEEE Photonics Technology Letters, 31, 1479(2019).

    [77] L Huang, Z Guan, C Yang, et al. High-precision tunable single-frequency fiber laser at 1.5 μm based on self-injection locking. IEEE Photonics Technology Letters, 34, 633-636(2021).

    [78] Z Bai, D Jin, J Ding, . Brillouin laser power exceeds 20 W. Chinese Journal of Lasers, 48, 2116003(2021).

    [79] Y Guo, M Xu, W Peng, et al. Realization of a 101 W single-frequency continuous wave all-solid-state 1064 nm laser by means of mode self-reproduction. Optics Letters, 43, 6017(2018).

    [80] W Peng, P Jin, F Li, et al. A review of the high-power all-solid-state single-frequency continuous-wave laser. Micro-machines, 12, 1426(2021).

    [81] A Schülzgen, L Li, V Temyanko, et al. Single-frequency fiber oscillator with watt-level output power using photonic crystal phosphate glass fiber. Optics Express, 14, 7087(2006).

    [82] Y Tao, M Jiang, L Liu, et al. Single-polarization single-frequency Brillouin fiber laser emits near 5-W power at 1 μm. Optics Letters, 47, 1742(2022).

    [83] G Goodno, L Book, J Rothenberg. Low-phase-noise, single-frequency, single-mode 608   W thulium fiber amplifier. Optics Letters, 34, 1204(2009).

    [84] L Huang, W Lai, P Ma, et al. Tapered Yb-doped fiber enabled monolithic high-power linearly polarized single-frequency laser. Optics Letters, 45, 4001(2020).

    [85] H Otto, C Jauregui, F Stutzki, et al. Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector. Optics Express, 21, 17285(2013).

    [86] C Jauregui, C Stihler, A Tünnermann, et al. Pump-modulation-induced beam stabilization in high-power fiber laser systems above the mode instability threshold. Optics Express, 26, 10691(2018).

    [87] C Stihler, C Jauregui, S Kholaif, et al. Intensity noise as a driver for transverse mode instability in fiber amplifiers. PhotoniX, 1, 8(2020).

    [88] A Sincore, J Bradford, J Cook, et al. High average power thulium-doped silica fiber lasers: Review of systems and concepts. Journal of Selected Topics in Quantum Electronics, 24, 0901808(2017).

    [89] D Creeden, B Johnson, S Setzler, et al. Resonantly pumped Tm-doped fiber laser with >90% slope efficiency. Optics Letters, 39, 470(2014).

    [90] Y Wang, J Yang, C Huang, et al. High power tandem-pumped thulium-doped fiber laser. Optics Express, 23, 2991(2015).

    [91] E Dianov. Bismuth-doped optical fibers: A challenging active medium for near-IR lasers and optical amplifiers. Light-Science & Applications, 1, e12(2012).

    [92] N Thipparapu, Y Wang, A Umnikov, et al. Bi-doped fiber amplifiers and lasers [Invited]. Optical Materials Express, 9, 2446(2019).

    [93] L Zhang, H Jiang, S Cui, et al. Versatile Raman fiber laser for sodium laser guide star. Laser & Photonics Reviews, 8, 889(2014).

    [94] Y Miao, P Ma, W Liu, et al. First demonstration of co-pumped single-frequency Raman fiber amplifier with spectral-broadening-free property enabled by ultra-low noise pumping. IEEE Access, 6, 71988(2019).

    [95] Y Xu, K Mak, Murdoch S and. Multiwatt level output powers from a tunable fiber optical parametric oscillator. Optics Letters, 36, 1966(2011).

    [96] S Yang, K Cheung, Y Zhou, et al. Tunable single-longitudinal-mode fiber optical parametric oscillator. Optics Letters, 35, 481(2010).

    [97] L Lim, Bakar M Abu, Mahdi M and. Wavelength-tunable single longitudinal mode fiber optical parametric oscillator. Optics Express, 25, 5501(2017).

    [98] J Zou, T Li, Y Dou, et al. Direct generation of watt-level yellow Dy3+-doped fiber laser. Photonics Research, 9, 446(2021).

    [99] M Lord, V Fortin, F Maes, et al. 2.3 W monolithic fiber laser operating in the visible. Optics Letters, 46, 2392(2021).

    [100] V Fortin, F Jobin, M Larose, et al. 10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm. Optics Letters, 44, 491(2019).

    [101] M Lemieux-Tanguay, V Fortin, T Boilard, et al. 15 W monolithic fiber laser at 3.55 µm. Optics Letters, 47, 289(2022).

    [102] S Häfner, S Falke, C Grebing, et al. 8 × 10−17 fractional laser frequency instability with a long room-temperature cavity. Optics Letters, 40, 2112(2015).

    [103] Dahl K, Cebeci P, Fitzau O, et al. A new laser technology f LISA [C]International Conference on Space Optics, 2018: 111800 C.

    [104] H Vahlbruch, D Wilken, M Mehmet, et al. Laser power stabilization beyond the shot noise limit using squeezed light. Physical Review Letters, 121, 173601(2018).

    [105] Y Wang, L Gao, X Zhang, et al. Recent development of low noise laser for precision measurement (Invited). Infrared and Laser Engineering, 49, 20201073(2020).

    [106] A Popp, V Distler, K Jaksch, et al. Quantum-limited measurements of intensity noise levels in Yb doped fiber amplifiers. Applied Physics B, 126, 130(2020).

    [107] H Tünnermann, J Neumann, D Kracht, et al. Gain dynamics and refractive index changes in fiber amplifiers: a frequency domain approach. Optics Express, 20, 13539(2012).

    [108] H Tünnermann, J Neumann, D Kracht, et al. Frequency resolved analysis of thermally induced refractive index changes in fiber amplifiers. Optics Letters, 37, 3597(2012).

    [109] J Zhao, G Guiraud, F Floissat, et al. Gain dynamics of clad-pumped Yb-fiber amplifier and intensity noise control. Optics Express, 25, 357(2017).

    [110] P Gierschke, C Jauregui, T Gottschall, et al. Relative amplitude noise transfer function of an Yb3+-doped fiber amplifier chain. Optics Express, 27, 17041(2019).

    [111] N Zhao, W Li, J Li, et al. Elimination of the photodarkening effect in an Yb-doped fiber laser with deuterium. Journal of Lightwave Technology, 37, 3021(2019).

    [112] N Zhao, K Peng, J Li, et al. Photodarkening effect suppression in Yb-doped fiber through the nanoporous glass phase-separation fabrication method. Optical Materials Express, 9, 1085(2019).

    [113] T Theeg, C Ottenhues, H Sayinc, et al. Core-pumped single-frequency fiber amplifier with an output power of 158 W. Optics Letters, 41, 9(2016).

    [114] J Zhao, G Guiraud, C Pierre, et al. High-power all-fiber ultra-low noise laser. Applied Physics B, 124, 114(2018).

    [115] L Wei, F Cleva, Man C Nary. Coherently combined master oscillator fiber power amplifiers for Advanced Virgo. Optics Letters, 41, 5817(2016).

    [116] F Wellmann, N Bode, P Wessels, et al. Low noise 400 W coherently combined single frequency laser beam for next generation gravitational wave detectors. Optics Letters, 29, 10140(2021).

    [117] G Ball, W Morey, W Glenn. Standing-wave monomode erbium fiber laser. IEEE Photonics Technology Letters, 3, 613(1991).

    Can Li, Pu Zhou, Pengfei Ma, Man Jiang, Yue Tao, Liu Liu. Research progress of single-frequency fiber laser technology (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20220237
    Download Citation