• Journal of Infrared and Millimeter Waves
  • Vol. 41, Issue 1, 2021391 (2022)
Yu-Hua GUI1、2, Jin-Ning LI1、2, Mei-Zhu WANG1、*, and Zhi-Ping HE1、*
Author Affiliations
  • 1Key Laboratory of Space Active Opto-Electronics Technology,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 2University of Chinese Academy of Sciences,Beijing 100049,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2022.01.004 Cite this Article
    Yu-Hua GUI, Jin-Ning LI, Mei-Zhu WANG, Zhi-Ping HE. Research and application of spectroscopic techniques in lunar and Mars exploration missions[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2021391 Copy Citation Text show less
    Spectral range of typical spectral payloads in major international lunar and Mars exploration missions in recent years
    Fig. 1. Spectral range of typical spectral payloads in major international lunar and Mars exploration missions in recent years
    Series of CLEP and infrared spectral payloads:(a)the schematic diagram of CE-1,(b)photo of IIM,(c)CE-3 Yutu rover on lunar surface,(d)photo of VNIS @ CE-3,(e)CE-4 Yutu-2 rover on lunar surface,(f)photo of VNIS @ CE-4,(g)the schematic diagram of CE-5 lander ascender combination(LAC),(h)photo of LMS
    Fig. 2. Series of CLEP and infrared spectral payloads:(a)the schematic diagram of CE-1,(b)photo of IIM,(c)CE-3 Yutu rover on lunar surface,(d)photo of VNIS @ CE-3,(e)CE-4 Yutu-2 rover on lunar surface,(f)photo of VNIS @ CE-4,(g)the schematic diagram of CE-5 lander ascender combination(LAC),(h)photo of LMS
    Tianwen-1 and its spectral detection payloads:(a)the schematic diagram of Tianwen-1 orbiter,(b)MMS,(c)image of Tianwen-1 Zhurong Mars rover taken on Mars,(d)MSCam,(e)MarSCoDe
    Fig. 3. Tianwen-1 and its spectral detection payloads:(a)the schematic diagram of Tianwen-1 orbiter,(b)MMS,(c)image of Tianwen-1 Zhurong Mars rover taken on Mars,(d)MSCam,(e)MarSCoDe
    The main scientific results of spectroscopic techniques applied to lunar exploration missions in recent years(a)distribution of minerals,watery region and temperature on the moon detected by M3,(b)lunar thermal distribution obtained based on Diviner data,(c)spectral reflectance of the first lunar day lunar surface CE4_0015,CE4_0016,and REFF data at detection point CE3_0008 acquired by VNIS,(d)normalized reflectance after continuum removal,(e)impact crater spectral detection region of carbonaceous spherical meteorites detected by Chang'e-4,(f)VNIS reflectance spectra corrected for glassy material in N66
    Fig. 4. The main scientific results of spectroscopic techniques applied to lunar exploration missions in recent years(a)distribution of minerals,watery region and temperature on the moon detected by M3,(b)lunar thermal distribution obtained based on Diviner data,(c)spectral reflectance of the first lunar day lunar surface CE4_0015,CE4_0016,and REFF data at detection point CE3_0008 acquired by VNIS,(d)normalized reflectance after continuum removal,(e)impact crater spectral detection region of carbonaceous spherical meteorites detected by Chang'e-4,(f)VNIS reflectance spectra corrected for glassy material in N66
    (a)Global map of pyroxene(top)and anhydrous iron oxide nanoparticles(bottom),(b)reflectance spectra of hydrated silicate minerals probed by CRISM and laboratory
    Fig. 5. (a)Global map of pyroxene(top)and anhydrous iron oxide nanoparticles(bottom),(b)reflectance spectra of hydrated silicate minerals probed by CRISM and laboratory
    目标时间国家探测任务光谱载荷光谱范围探测方式
    月球2007日本月亮女神SELENE多光谱成像仪MI遥感
    连续光谱测量仪SP0.5~2.6 μm遥感
    2007中国嫦娥一号 CE-1干涉成像光谱仪IIM0.48~0.96 μm遥感
    2008印度月船一号Chandrayaan-1超光谱成像仪HySI0.4~0.95 μm遥感
    近红外光谱仪SIR-20.93~2.4 μm遥感
    月球矿物测绘仪M30.43~3.0 μm遥感
    2009美国

    月球环形山观测

    与遥感卫星LCROSS

    可见近红外光谱仪VNIRS

    0.26~0.66 μm

    1.40~2.40 μm

    遥感
    2009美国月球勘测轨道器LRO月球辐射度计Diviner0.3~400 μm遥感
    2013中国嫦娥三号CE-3红外成像光谱仪VNIS0.45~2.4 μm原位
    2018中国嫦娥四号CE-4红外成像光谱仪VNIS0.45~2.4 μm原位
    2019印度月船二号Chandrayaan-2红外成像光谱仪IIRS0.8~5.0 μm遥感
    2020中国嫦娥五号CE-5月球矿物光谱仪LMS0.48~3.2 μm原位
    火星2003欧空局火星快车Mars Express可见光和红外矿物测绘光谱仪OMEGA0.36~5.08 μm遥感
    紫外与红外大气光谱仪SPICAM0.11~0.32,1.0~1.70 μm遥感
    2005美国火星轨道探测器MRO火星小型侦察成像光谱仪CRISM0.36~3.92 μm遥感
    2016欧空局ExoMars 2016痕量气体轨道器TGO0.7~1.65 μm遥感
    2011美国好奇号CuriosityChemCam-LIBS0.24~0.85 μm原位
    2020美国毅力号Perseverance超级分析相机SuperCam-LIBS0.24~0.85 μm原位
    超级分析相机SuperCam-VISIR0.4~0.85,1.3~2.6 μm原位
    2020中国天问一号TW-1火星矿物光谱分析仪MMS0.38~3.42 μm遥感
    火星表面成分探测仪MarSCoDe0.24~2.4 μm原位
    多光谱相机MSCam原位
    Table 1. Typical spectral payloads of major lunar and Mars exploration missions in recent years
    载荷名称嫦娥一号IIM嫦娥三号VNIS嫦娥四号VNIS嫦娥五号LMS
    主要通道VIS-NIRSWIRVIS-NIRSWIRVIS-NIRSWIR-MWIR
    光谱范围/nm480~960449~950900~2400450~950900~2400480~14501400~3200
    光谱分辨率/nm7.62~292~73~122.4~6.53.6~9.52.4~9.47.6~24.9
    总视场/°7.38.5×8.53.68.5×8.53.64.17×4.174.17×4.17
    像元数256×256256×2561256×2561256×2561
    信噪比/dB

    ≥100@

    太阳高度角60°

    ≥31@

    反照率9%,太阳高度角45°

    ≥32@

    反照率9%,太阳高度角15°

    ≥33@

    反照率9%,太阳高度角45°

    ≥31@

    反照率9%,太阳高度角15°

    ≥34@

    反照率9%,太阳高度角45°

    ≥39@

    反照率9%,太阳高度角15°

    功耗 /w19.816.9515.17
    重量/kg

    4.675/探头

    ~0.7/电学箱

    4.675/探头

    ~0.7/电学箱

    5.57
    工作温度/℃-20 ~ +55-20 ~ +55-25 ~ +65
    分光方式傅里叶干涉AOTFAOTFAOTF
    探测方式环绕遥感原位原位原位
    Table 2. Performance indicators for spectroscopy payloads on Chang-e exploration mission
    载荷名称天问一号MMS天问一号MarSCoDe天问一号MSCam
    主要通道V-NIRN-MIRLIBSSWIR
    光谱范围/nm379~10761033~3425240~850850~2400480、525、650、700、800、900、950、1000
    光谱分辨率/nm2.96~3.908.36~10.91

    0.19 @ 240∼340

    0.31 @ 340∼540

    0.45 @ 540∼850

    3-1220@480、20@525、12@650、15@700、25@800、30@900、50@950、50@1000
    总视场/deg1212
    像元数512×255512×255
    信噪比/dB≥45 @太阳入射角 45°,目标反照率 15%≥33 @太阳入射角 45°,目标反照率 15%≥40≥40 @太阳入射角 30°,目标反照率30%
    功耗 /W44.964≤8
    重量/kg

    7.26/单机

    0.83/热控件

    16.41.65
    分光方式光栅光栅AOTF滤光片
    探测方式环绕遥感原位原位
    Table 3. Performance indicators for near-infrared spectroscopy payloads on Tianwen-1 exploration mission
    Yu-Hua GUI, Jin-Ning LI, Mei-Zhu WANG, Zhi-Ping HE. Research and application of spectroscopic techniques in lunar and Mars exploration missions[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2021391
    Download Citation