• Photonics Research
  • Vol. 12, Issue 3, 543 (2024)
Xiao Hu1,2, Tupei Chen2, Seongwoo Yoo2, and Dingyuan Tang1,*
Author Affiliations
  • 1Julong College, Shenzhen Technology University, Shenzhen 518118, China
  • 2School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
  • show less
    DOI: 10.1364/PRJ.508144 Cite this Article Set citation alerts
    Xiao Hu, Tupei Chen, Seongwoo Yoo, Dingyuan Tang, "Cnoidal waves and their soliton limits in single mode fiber lasers," Photonics Res. 12, 543 (2024) Copy Citation Text show less
    References

    [1] P. St.J. Russell, T. A. Birks, F. D. Lloyd-Lucas. Photonic Bloch waves and photonic band gaps. Confined Electrons and Photons, 340, 585-633(1995).

    [2] V. N. Serkin, M. Matsumoto, T. L. Belyaeva. Bright and dark solitary nonlinear Bloch waves in dispersion managed fiber systems and soliton lasers. Opt. Commun., 196, 159-171(2001).

    [3] D. J. Korteweg, G. de Vries. On the change of form of long waves in a rectangular canal, and on a new type of long stationary waves. Philos. Mag., 39, 422-443(1895).

    [4] G. B. Whitham. Linear and Nonlinear Waves(1974).

    [5] H. Schamel. Analytical BGK modes and their modulational instability. J. Plasma Phys., 13, 139-145(1975).

    [6] A. E. Walstead. A study of nonlinear waves described by the cubic nonlinear Schrödinger equation(1980).

    [7] A. R. Osbourne. Nonlinear Ocean Waves and the Inverse Scattering Transform(2010).

    [8] T. Kaladze, S. Mahmood. Ion-acoustic cnoidal waves in plasmas with warm ions and kappa distributed electrons and positrons. Phys. Plasmas, 21, 032306(2014).

    [9] G. P. Agrawal. Nonlinear Fiber Optics(2001).

    [10] A. B. Matsko, A. A. Savchenko, W. Liang. Mode-locked Kerr frequency combs. Opt. Lett., 36, 2845-2847(2011).

    [11] Y. K. Chembo, C. R. Menyuk. Spatiotemporal Lugiato–Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys. Rev. A, 87, 053852(2013).

    [12] Z. Qi, S. K. Wang, J. Jaramillo-Villegas. Dissipative cnoidal waves (Turing rolls) and the soliton limit in microring resonators. Optica, 6, 1220-1232(2019).

    [13] Z. Qi, G. D’Aguanno, C. R. Menyuk. Nonlinear frequency combs generated by cnoidal waves in microring resonators. J. Opt. Soc. Am. B, 34, 785-794(2017).

    [14] Z. Qi, A. Leshem, J. A. Jaramillo-Villegas. Deterministic access of broadband frequency combs in microresonators using cnoidal waves in the soliton crystal limit. Opt. Express, 28, 36304-36315(2020).

    [15] V. Aleshkevich, Y. Kartashov, V. Vysloukh. Cnoidal waves compression by means of multisoliton effect. Opt. Commun., 185, 305-314(2000).

    [16] V. Aleshkevich, Y. Kartashov. Self-frequency shift of cnoidal waves in a medium with delayed nonlinear response. J. Opt. Soc. Am. B, 18, 1127-1136(2000).

    [17] Y. Kartashov, V. A. Vysloukh, E. M. Panameno. Dispersion-managed cnoidal pulse trains. Phys. Rev. E, 68, 026613(2003).

    [18] V. N. Serkin, A. Hasegawa. Novel soliton solutions of the nonlinear Schrödinger equation model. Phys. Rev. Lett., 85, 4502-4505(2000).

    [19] L. H. Zhao, C. Q. Dai. Self-similar cnoidal and solitary wave solutions of the (1+1)-dimensional generalized nonlinear Schrödinger equation. Eur. Phys. J. D, 58, 327-332(2010).

    [20] Y. V. Kartashov, V. A. Vysloukh, L. Torner. Cnoidal wave patterns in quadratic nonlinear media. Phys. Rev. E, 67, 066612(2003).

    [21] D. J. Kedziora, A. Ankiewicz, N. Akhmediev. Rogue waves and solitons on a cnoidal background. Eur. Phys. J. Spec. Top., 223, 43-62(2014).

    [22] K. Porsezian, B. Kalithasan. Cnoidal and solitary wave solutions of the coupled higher order nonlinear Schrödinger equation in nonlinear optics. Chaos Solitons Fractals, 31, 188-196(2007).

    [23] X. Hu, J. Guo, G. D. Shao. Dissipative dark-bright vector solitons in fiber lasers. Phys. Rev. A, 101, 063807(2020).

    [24] A. B. Grudinin, S. Gray. Passive harmonic mode locking in soliton fiber lasers. J. Opt. Soc. Am. B, 14, 144-154(1997).

    [25] C. M. Wu, N. K. Dutta. High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser. IEEE J. Quantum Electron., 36, 721-727(2000).

    [26] J. Boguslawski, G. Sobon, R. Zybala. Towards an optimum saturable absorber for the multi-gigahertz harmonic mode locking of fiber lasers. Photon. Res., 7, 1094-1100(2019).

    [27] F. Amrani, A. Haboucha, M. Salhi. Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic. Opt. Lett., 34, 2120-2122(2009).

    [28] C. S. Jun, S. Y. Choi, F. Rotermund. Toward higher-order passive harmonic mode-locking of a soliton fiber laser. Opt. Lett., 37, 1862-1864(2012).

    [29] S. M. J. Kelly. Characteristic sideband instability of periodically amplified average soliton. Electron. Lett., 28, 8-9(1992).

    [30] K. Tai, A. Hasegawa, A. Tomita. Observation of modulational instability in optical fibers. Phys. Rev. Lett., 56, 135-138(1986).

    [31] B. Zhao, D. Y. Tang, H. Y. Tam. Experimental observation of FPU recurrence in a fiber ring laser. Opt. Express, 11, 3304-3309(2003).

    [32] C. Y. Bao, J. A. J. Villegas, Y. Xuan. Observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in an optical microresonator. Phys. Rev. Lett., 117, 163901(2016).

    [33] G. Xu, A. Cabchoub, D. E. Pelinovsky. Observation of modulation instability and rogue breathers on stationary periodic waves. Phys. Rev. Res., 2, 033528(2020).

    [34] D. Y. Tang, J. Guo, Y. F. Song. Temporal cavity soliton formation in an anomalous dispersion cavity fiber laser. J. Opt. Soc. Am. B, 31, 3050-3056(2014).

    [35] D. Y. Tang, J. Guo, Y. F. Song. GHz pulse train generation in fiber lasers by cavity induced modulation instability. Opt. Fiber Technol., 20, 610-614(2014).

    [36] S. Coen, M. Haelterman. Modulational instability induced by cavity boundary conditions in a normally dispersive optical fiber. Phys. Rev. Lett., 79, 4139-4142(1997).

    [37] D. Mao, H. Q. Wang, H. Z. Zhang. Synchronized multi-wavelength soliton fiber laser via intracavity group delay modulation. Nat. Commun., 12, 6712(2021).

    [38] H. Zhang, D. Y. Tang, L. M. Zhao. Dual-wavelength domain wall solitons in a fiber ring laser. Opt. Express, 19, 3525-3530(2011).

    [39] Y. C. Meng, G. Semaan, M. Kemel. Color domain in fiber lasers. Opt. Lett., 43, 5054-5057(2018).

    [40] B. A. Malomed. Nonsteady waves in distributed dynamical systems. Physica D, 8, 353-359(1983).

    [41] B. A. Malomed. Evolution of nonsoliton and ‘quasi-classical’ wave trains in nonlinear Schrödinger and Korteweg-de Vries equations with dissipative perturbations. Physica D, 29, 155-172(1987).

    [42] H. J. Shin. Soliton on a cnoidal wave background in the coupled nonlinear Schrödinger equation. J. Phys. A, 37, 8017-8030(2004).

    [43] X. Hu, J. Guo, J. Ma. Periodic power variation induced sideband instability in a single mode fiber laser. Laser. Phys. Lett., 17, 095103(2020).

    [44] X. Hu, J. Guo, L. Li. Evolution from periodic intensity modulations to dissipative vector solitons in a single-mode fiber laser. Photonics, 7, 103(2020).

    [45] F. C. Meng, C. Lapre, C. Billet. Intracavity incoherent supercontinuum dynamics and rogue waves in a broadband dissipative soliton laser. Nat. Commun., 12, 5567(2021).

    [46] A. V. Husakou, J. Herrmann. Supercontinuum generation of higher order solitons by fission in photonic crystal fibers. Phys. Rev. Lett., 87, 203901(2001).

    [47] S. M. Hendrickson, A. C. Foster, R. M. Camacho. Integrated nonlinear photonics: emerging applications and ongoing challenges. J. Opt. Soc. Am. B, 31, 3193-3203(2014).

    [48] C. Q. Dai, Y. Y. Wang, C. J. Yan. Chirped and chirp-free self-similar cnoidal and solitary wave solutions of the cubic-quintic nonlinear Schrödinger equation with distributed coefficients. Opt. Commun., 283, 1489-1494(2010).