• Photonics Research
  • Vol. 12, Issue 3, 543 (2024)
Xiao Hu1、2, Tupei Chen2, Seongwoo Yoo2, and Dingyuan Tang1、*
Author Affiliations
  • 1Julong College, Shenzhen Technology University, Shenzhen 518118, China
  • 2School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
  • show less
    DOI: 10.1364/PRJ.508144 Cite this Article Set citation alerts
    Xiao Hu, Tupei Chen, Seongwoo Yoo, Dingyuan Tang. Cnoidal waves and their soliton limits in single mode fiber lasers[J]. Photonics Research, 2024, 12(3): 543 Copy Citation Text show less
    References

    [1] P. St.J. Russell, T. A. Birks, F. D. Lloyd-Lucas. Photonic Bloch waves and photonic band gaps. Confined Electrons and Photons, 340, 585-633(1995).

    [2] V. N. Serkin, M. Matsumoto, T. L. Belyaeva. Bright and dark solitary nonlinear Bloch waves in dispersion managed fiber systems and soliton lasers. Opt. Commun., 196, 159-171(2001).

    [3] D. J. Korteweg, G. de Vries. On the change of form of long waves in a rectangular canal, and on a new type of long stationary waves. Philos. Mag., 39, 422-443(1895).

    [4] G. B. Whitham. Linear and Nonlinear Waves(1974).

    [5] H. Schamel. Analytical BGK modes and their modulational instability. J. Plasma Phys., 13, 139-145(1975).

    [6] A. E. Walstead. A study of nonlinear waves described by the cubic nonlinear Schrödinger equation(1980).

    [7] A. R. Osbourne. Nonlinear Ocean Waves and the Inverse Scattering Transform(2010).

    [8] T. Kaladze, S. Mahmood. Ion-acoustic cnoidal waves in plasmas with warm ions and kappa distributed electrons and positrons. Phys. Plasmas, 21, 032306(2014).

    [9] G. P. Agrawal. Nonlinear Fiber Optics(2001).

    [10] A. B. Matsko, A. A. Savchenko, W. Liang. Mode-locked Kerr frequency combs. Opt. Lett., 36, 2845-2847(2011).

    [11] Y. K. Chembo, C. R. Menyuk. Spatiotemporal Lugiato–Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys. Rev. A, 87, 053852(2013).

    [12] Z. Qi, S. K. Wang, J. Jaramillo-Villegas. Dissipative cnoidal waves (Turing rolls) and the soliton limit in microring resonators. Optica, 6, 1220-1232(2019).

    [13] Z. Qi, G. D’Aguanno, C. R. Menyuk. Nonlinear frequency combs generated by cnoidal waves in microring resonators. J. Opt. Soc. Am. B, 34, 785-794(2017).

    [14] Z. Qi, A. Leshem, J. A. Jaramillo-Villegas. Deterministic access of broadband frequency combs in microresonators using cnoidal waves in the soliton crystal limit. Opt. Express, 28, 36304-36315(2020).

    [15] V. Aleshkevich, Y. Kartashov, V. Vysloukh. Cnoidal waves compression by means of multisoliton effect. Opt. Commun., 185, 305-314(2000).

    [16] V. Aleshkevich, Y. Kartashov. Self-frequency shift of cnoidal waves in a medium with delayed nonlinear response. J. Opt. Soc. Am. B, 18, 1127-1136(2000).

    [17] Y. Kartashov, V. A. Vysloukh, E. M. Panameno. Dispersion-managed cnoidal pulse trains. Phys. Rev. E, 68, 026613(2003).

    [18] V. N. Serkin, A. Hasegawa. Novel soliton solutions of the nonlinear Schrödinger equation model. Phys. Rev. Lett., 85, 4502-4505(2000).

    [19] L. H. Zhao, C. Q. Dai. Self-similar cnoidal and solitary wave solutions of the (1+1)-dimensional generalized nonlinear Schrödinger equation. Eur. Phys. J. D, 58, 327-332(2010).

    [20] Y. V. Kartashov, V. A. Vysloukh, L. Torner. Cnoidal wave patterns in quadratic nonlinear media. Phys. Rev. E, 67, 066612(2003).

    [21] D. J. Kedziora, A. Ankiewicz, N. Akhmediev. Rogue waves and solitons on a cnoidal background. Eur. Phys. J. Spec. Top., 223, 43-62(2014).

    [22] K. Porsezian, B. Kalithasan. Cnoidal and solitary wave solutions of the coupled higher order nonlinear Schrödinger equation in nonlinear optics. Chaos Solitons Fractals, 31, 188-196(2007).

    [23] X. Hu, J. Guo, G. D. Shao. Dissipative dark-bright vector solitons in fiber lasers. Phys. Rev. A, 101, 063807(2020).

    [24] A. B. Grudinin, S. Gray. Passive harmonic mode locking in soliton fiber lasers. J. Opt. Soc. Am. B, 14, 144-154(1997).

    [25] C. M. Wu, N. K. Dutta. High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser. IEEE J. Quantum Electron., 36, 721-727(2000).

    [26] J. Boguslawski, G. Sobon, R. Zybala. Towards an optimum saturable absorber for the multi-gigahertz harmonic mode locking of fiber lasers. Photon. Res., 7, 1094-1100(2019).

    [27] F. Amrani, A. Haboucha, M. Salhi. Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic. Opt. Lett., 34, 2120-2122(2009).

    [28] C. S. Jun, S. Y. Choi, F. Rotermund. Toward higher-order passive harmonic mode-locking of a soliton fiber laser. Opt. Lett., 37, 1862-1864(2012).

    [29] S. M. J. Kelly. Characteristic sideband instability of periodically amplified average soliton. Electron. Lett., 28, 8-9(1992).

    [30] K. Tai, A. Hasegawa, A. Tomita. Observation of modulational instability in optical fibers. Phys. Rev. Lett., 56, 135-138(1986).

    [31] B. Zhao, D. Y. Tang, H. Y. Tam. Experimental observation of FPU recurrence in a fiber ring laser. Opt. Express, 11, 3304-3309(2003).

    [32] C. Y. Bao, J. A. J. Villegas, Y. Xuan. Observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in an optical microresonator. Phys. Rev. Lett., 117, 163901(2016).

    [33] G. Xu, A. Cabchoub, D. E. Pelinovsky. Observation of modulation instability and rogue breathers on stationary periodic waves. Phys. Rev. Res., 2, 033528(2020).

    [34] D. Y. Tang, J. Guo, Y. F. Song. Temporal cavity soliton formation in an anomalous dispersion cavity fiber laser. J. Opt. Soc. Am. B, 31, 3050-3056(2014).

    [35] D. Y. Tang, J. Guo, Y. F. Song. GHz pulse train generation in fiber lasers by cavity induced modulation instability. Opt. Fiber Technol., 20, 610-614(2014).

    [36] S. Coen, M. Haelterman. Modulational instability induced by cavity boundary conditions in a normally dispersive optical fiber. Phys. Rev. Lett., 79, 4139-4142(1997).

    [37] D. Mao, H. Q. Wang, H. Z. Zhang. Synchronized multi-wavelength soliton fiber laser via intracavity group delay modulation. Nat. Commun., 12, 6712(2021).

    [38] H. Zhang, D. Y. Tang, L. M. Zhao. Dual-wavelength domain wall solitons in a fiber ring laser. Opt. Express, 19, 3525-3530(2011).

    [39] Y. C. Meng, G. Semaan, M. Kemel. Color domain in fiber lasers. Opt. Lett., 43, 5054-5057(2018).

    [40] B. A. Malomed. Nonsteady waves in distributed dynamical systems. Physica D, 8, 353-359(1983).

    [41] B. A. Malomed. Evolution of nonsoliton and ‘quasi-classical’ wave trains in nonlinear Schrödinger and Korteweg-de Vries equations with dissipative perturbations. Physica D, 29, 155-172(1987).

    [42] H. J. Shin. Soliton on a cnoidal wave background in the coupled nonlinear Schrödinger equation. J. Phys. A, 37, 8017-8030(2004).

    [43] X. Hu, J. Guo, J. Ma. Periodic power variation induced sideband instability in a single mode fiber laser. Laser. Phys. Lett., 17, 095103(2020).

    [44] X. Hu, J. Guo, L. Li. Evolution from periodic intensity modulations to dissipative vector solitons in a single-mode fiber laser. Photonics, 7, 103(2020).

    [45] F. C. Meng, C. Lapre, C. Billet. Intracavity incoherent supercontinuum dynamics and rogue waves in a broadband dissipative soliton laser. Nat. Commun., 12, 5567(2021).

    [46] A. V. Husakou, J. Herrmann. Supercontinuum generation of higher order solitons by fission in photonic crystal fibers. Phys. Rev. Lett., 87, 203901(2001).

    [47] S. M. Hendrickson, A. C. Foster, R. M. Camacho. Integrated nonlinear photonics: emerging applications and ongoing challenges. J. Opt. Soc. Am. B, 31, 3193-3203(2014).

    [48] C. Q. Dai, Y. Y. Wang, C. J. Yan. Chirped and chirp-free self-similar cnoidal and solitary wave solutions of the cubic-quintic nonlinear Schrödinger equation with distributed coefficients. Opt. Commun., 283, 1489-1494(2010).

    Xiao Hu, Tupei Chen, Seongwoo Yoo, Dingyuan Tang. Cnoidal waves and their soliton limits in single mode fiber lasers[J]. Photonics Research, 2024, 12(3): 543
    Download Citation