• Chinese Journal of Lasers
  • Vol. 46, Issue 12, 1214002 (2019)
Mengzhen Hao, Fengping Yan*, Wei Wang, Xuemei Du, and Hong Huo
Author Affiliations
  • Key Laboratory of All Optical Network and Advanced Telecommunication Network of Ministry of Education,Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China
  • show less
    DOI: 10.3788/CJL201946.1214002 Cite this Article Set citation alerts
    Mengzhen Hao, Fengping Yan, Wei Wang, Xuemei Du, Hong Huo. Metamaterial-Based Terahertz Polarization-Insensitive Broadband Absorber[J]. Chinese Journal of Lasers, 2019, 46(12): 1214002 Copy Citation Text show less
    References

    [1] Tao H, Bingham C M, Pilon D et al. A dual band terahertz metamaterial absorber[J]. Journal of Physics D: Applied Physics, 43, 225102(2010). http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010JPhD...43v5102T&db_key=PHY&link_type=ABSTRACT

    [2] Kakenov N, Balci O, Takan T et al. Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene[J]. ACS Photonics, 3, 1531-1535(2016). http://pubs.acs.org/doi/10.1021/acsphotonics.6b00240

    [3] He Y X, Wang Y Y, Xu D G et al. High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation[J]. Applied Physics B, 124, 16(2018). http://link.springer.com/10.1007/s00340-017-6887-4

    [4] Joseph C S, Yaroslavsky A N, Neel V A et al. Continuous wave terahertz transmission imaging of nonmelanoma skin cancers[J]. Lasers in Surgery and Medicine, 43, 457-462(2011).

    [5] Yeo W G. Terahertz spectroscopic characterization and imaging for biomedical applications[D]. USA: The Ohio State University(2015).

    [6] Hu Y, Huang P, Guo L T et al. Terahertz spectroscopic investigations of explosives[J]. Physics Letters A, 359, 728-732(2006). http://www.sciencedirect.com/science/article/pii/S0375960106011753

    [7] Jansen C, Wietzke S, Peters O et al. Terahertz imaging: applications and perspectives[J]. Applied Optics, 49, E48-E57(2010). http://www.ncbi.nlm.nih.gov/pubmed/20648121

    [8] Islam M S, Sultana J, Rifat A A et al. Terahertz sensing in a hollow core photonic crystal fiber[J]. IEEE Sensors Journal, 18, 4073-4080(2018). http://ieeexplore.ieee.org/document/8325465/

    [9] Llatser I, Mestres A, Abadal S et al. Time-and frequency-domain analysis of molecular absorption in short-range terahertz communications[J]. IEEE Antennas and Wireless Propagation Letters, 14, 350-353(2015). http://ieeexplore.ieee.org/document/6918423/

    [10] Chen H T, Padilla W J. Zide J M O, et al. Active terahertz metamaterial devices[J]. Nature, 444, 597-600(2006).

    [11] Smith D R, Padilla W J, Vier D C et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 84, 4184-4187(2000). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000084000018004184000001&idtype=cvips&gifs=Yes

    [12] Pendry J. Metamaterials in the sunshine[J]. Nature Materials, 5, 599-600(2006).

    [13] Li R B, Du X, Zhang Z H et al. Ultra-precision machining of optical microstructures[J]. Nanotechnology and Precision Engineering, 1, 57-61(2003).

    [14] Lu M Z, Li W Z, Brown E R. Second-order bandpass terahertz filter achieved by multilayer complementary metamaterial structures[J]. Optics Letters, 36, 1071-1073(2011). http://www.opticsinfobase.org/abstract.cfm?URI=ol-36-7-1071

    [15] Al-Naib I. Biomedical sensing with conductively coupled terahertz metamaterial resonators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 4700405(2017). http://ieeexplore.ieee.org/document/7745933/

    [16] Liu X Y, Fan K B, Shadrivov I V et al. Experimental realization of a terahertz all-dielectric metasurface absorber[J]. Optics Express, 25, 191-201(2017). http://europepmc.org/abstract/med/28085806

    [17] Sun H H, Yan F P, Tan S Y et al. Simulation analysis on design of permeability-near-zero terahertz metamaterials[J]. Chinese Journal of Lasers, 45, 0614001(2018).

    [18] Li G S, Yan F P, Wang W et al. Analysis of photosensitive tunable multiband electromagnetically induced transparency metamaterials[J]. Chinese Journal of Lasers, 46, 0114002(2019).

    [19] Rodrigo S G, Martín-Moreno L. Molecular detection with terahertz waves based on absorption-induced transparency metamaterials[J]. Proceedings of SPIE, 9993, 99930C(2016).

    [20] Wilbert D S, Hokmabadi M P, Baughman W et al. Highly efficient, polarization insensitive terahertz metamaterial perfect absorber and imaging. [C]//IEEE Photonics Conference 2012, September 23-27, 2012, Burlingame, CA, USA. New York: IEEE, 228-229(2012).

    [21] Grant J, Escorcia-Carranza I, Li C et al. A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer[J]. Laser & Photonics Reviews, 7, 1043-1048(2013). http://onlinelibrary.wiley.com/doi/pdf/10.1002/lpor.201300087

    [22] Iwaszczuk K, Strikwerda A C, Fan K B et al. Flexible metamaterial absorbers for stealth applications at terahertz frequencies[J]. Optics Express, 20, 635-643(2012).

    [23] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [24] Zou T B, Hu F R, Xiao J et al. Design of a polarization-insensitive and broadband terahertz absorber using metamaterials[J]. Acta Physica Sinica, 63, 178103(2014).

    [25] Ye Y Q, Jin Y, He S L. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime[J]. Journal of the Optical Society of America B, 27, 498-504(2010). http://www.opticsinfobase.org/abstract.cfm?URI=josab-27-3-498

    [26] Hendrickson J, Guo J P, Zhang B Y et al. Wideband perfect light absorber at midwave infrared using multiplexed metal structures[J]. Optics Letters, 37, 371-373(2012). http://www.ncbi.nlm.nih.gov/pubmed/22297356/

    [27] Huang L, Chowdhury D R, Ramani S et al. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band[J]. Optics Letters, 37, 154-156(2012).

    [28] Song Z Y, Wang K, Li J W et al. Broadband tunable terahertz absorber based on vanadium dioxide metamaterials[J]. Optics Express, 26, 7148-7154(2018). http://europepmc.org/abstract/MED/29609401

    [29] Engheta N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials[J]. Science, 317, 1698-1702(2007). http://www.jstor.org/stable/20048415

    [30] Zhang Q, Bai L H, Bai Z Y et al. Theoretical analysis and design of a near-infrared broadband absorber based on EC model[J]. Optics Express, 23, 8910-8917(2015). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-23-7-8910

    [31] Smith D R, Pendry J B. Homogenization of metamaterials by field averaging (invited paper)[J]. Journal of the Optical Society of America B, 23, 391-403(2006). http://www.opticsinfobase.org/josab/abstract.cfm?id=88349

    [32] Zhou J F, Economon E N, Koschny T et al. Unifying approach to left-handed material design[J]. Optics Letters, 31, 3620-3622(2006).

    Mengzhen Hao, Fengping Yan, Wei Wang, Xuemei Du, Hong Huo. Metamaterial-Based Terahertz Polarization-Insensitive Broadband Absorber[J]. Chinese Journal of Lasers, 2019, 46(12): 1214002
    Download Citation