• Journal of Inorganic Materials
  • Vol. 34, Issue 4, 407 (2019)
Zhi-Jun MA, Chang-Ye MANG, Hai-Tao ZHAO, Zhi-Hao GUAN, and Liang CHENG
Author Affiliations
  • College of Mining, Liaoning Technical University, Fuxin 123000, China
  • show less
    DOI: 10.15541/jim20180280 Cite this Article
    Zhi-Jun MA, Chang-Ye MANG, Hai-Tao ZHAO, Zhi-Hao GUAN, Liang CHENG. Comparison of Electromagnetism Behavior of Different Content Cobalt-zinc Ferrite Loaded with Graphene[J]. Journal of Inorganic Materials, 2019, 34(4): 407 Copy Citation Text show less
    References

    [1] L WU G, H CHENG Y, F XIANG et al. Morphology controlled synthesis, characterization and microwave absorption properties of nanostructured 3D CeO2. Mat. Sci. Semicond. Process, 41, 6-11(2016).

    [2] W FU, S LIU, W FAN et al. Hollow glass microspheres coated with CoFe2O4 and its microwave absorption property.. Magn. Magn. Mater, 316, 54-58(2007).

    [3] A HAJALILOU, M HASHIM, T MASOUDI M. A comparative study of in-situ mechanochemically synthesized Mn0.5Zn0.5Fe2O4 ferrite nanoparticles in the MnO/ZnO/Fe2O3 and MnO2/Zn/Fe2O3 systems. Ceramics International, 41, 8070-8079(2015).

    [4] C ZHANG X, P WANG D, H YAO A et al. Optimization on preparation process of Mn-Zn ferrite powder by Sol-Gel method. Bulletin of the Chinese Ceramic Society, 27, 937-940(2008).

    [5] T ZHAO H, Q ZHANG, P LIU R et al. Synthesis and magnetic properties of monodisperse ZnFe2O4 nanoparticles. Journal of Materials Engineering, 44, 103-107(2016).

    [6] J LIU, R CHE, H CHEN et al. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small, 8, 1214-1221(2012).

    [7] J GUO, H WU, X LIAO et al. Facile synthesis of size-controlled silver nanoparticles using plant tannin grafted collagen fiber as reductant and stabilizer for microwave absorption application in the whole Ku band. J. Phys. Chem. C, 115, 23688-23694(2011).

    [8] L KONG, X YIN, Y ZHANG et al. Electromagnetic wave absorption properties of reduced graphene oxide modified by Maghemite colloidal nanoparticle clusters. J. Phys. Chem.C, 117, 19701-19711(2013).

    [9] F SCHEDIN, K GEIM A, V MOROZOV S et al. Detection of individual gas molecules adsorbed on graphene. Nat. Mater, 6, 652-655(2007).

    [10] K ANG P, W CHEN, A WEE et al. Solution-gated epitaxial graphene as pH sensor.. Am. Chem. Soc, 130, 14392-14393(2008).

    [11] D STOLLER M, J PARK S, W ZHU Y et al. Graphene-based ultracapacitors. Nano Lett, 8, 3498-3502(2008).

    [12] G EDA, G FANCHINI, M CHHOWALLA. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol, 3, 270-274(2008).

    [13] E YOO, J KIM, E HOSONO et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett, 8, 2277-2282(2008).

    [14] K GEIM A. Graphene: status and prospects. Science, 324, 1530-1534(2009).

    [15] A BALANDIN A, S GHOSH, Z BAO W et al. Lausuperior thermal conductivity of single layer graphene. Nano Lett, 8, 902-907(2008).

    [16] C LEE, D WEI X, W KYSAR J et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385-388(2008).

    [17] D LI, B MULLER M, S GILJE et al. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol, 3, 101-105(2008).

    [18] I JUNG, A DIKIN D, D PINER R et al. Tunable electrical conductivity of individual graphene oxide sheets reduced at “low” temperatures. Nano Lett, 8, 4283-4287(2008).

    [19] H CHEN, B MULLER M, J GILMORE K et al. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater, 20, 3557-3561(2008).

    [20] C LIAN P, F ZHU X, F XIANG H et al. Enhanced cycling performance of Fe3O4-graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim.Acta, 56, 834-840(2010).

    [21] W LI N, B ZHENG M, F CHANG X et al. Preparation of magnetic CoFe2O4-functionalized graphene sheets via a facile hydrothermal method and their adsorption properties.. Solid State Chem, 184, 953-958(2011).

    [22] M ZONG, Y HUANG, N ZHANG et al. Influence of (RGO)/(Ferrite) ratios and graphene reduction degree on microwave absorption properties of graphene composites. J. Alloys Compd, 644, 491-501(2015).

    [23] C DAN, X LIU, R YU et al. Enhanced microwave absorption properties of flake-shaped FePCB metallic glass/graphene composites. Composites Part A, 89, 33-39(2016).

    [24] R AN, Y WEI H, M HE et al. The progress analysis of carbon- based composites used for electromagnetic wave absorption. Materials Review, 31, 46-53, 61(2017).

    [25] S HUMMERS W, E OFFEMAN R. Preparation of graphitic oxide. Journal of the American Chemical Society, 80, 1339(1958).

    [26] I KOVTYUKHOVA N, J OLLIVIER P. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chemical Materials, 11, 71-78(1999).

    [27] Y GENG, J WANG S, K KIM J. Preparation of graphite nanoplatelets and graphene sheets.. Colloid Interface Sci, 336, 592-598(2009).

    [28] J SU, H CAO M, L REN et al. Fe3O4-graphene nanocomposites with improved Lithium storage and Magnetism properties. J. Phys. Chem.C, 115, 14469-14477(2011).

    [29] A GABAL M, M EL-SHISHTAWY R, YM ANGARI. Structural and magnetic properties of nano-crystalline Ni-Zn ferrites synthesized using egg-white precursor.. Magn. Magn. Mater, 324, 2258-2264(2012).

    [30] B YANG H, T YE, Y LIN et al. Microwave absorbing properties of the ferrite composites based on graphene.. Alloys Compd, 683, 567-574(2016).

    [31] D GRAF, F MOLITOR, K ENSSLIN et al. Spatially resolved raman spectroscopy of single and few-layer graphene. Nano Lett, 7, 238-242(2007).

    [32] J BELL N, H HG Y, J DU A et al. Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite. J. Phys. Chem.C, 115, 6004-6009(2011).

    [33] MIN FU, QINGZE JIAO, YUN ZHAO. Preparation of NiFe2O4 nanorod-graphene compoites via an ionic liquid assisted one-step hydrothermal approch and their microwave absorbing properties. Journal of Materials Chemistry A, 1, 5577-5586(2013).

    [34] AC FERRARI, A ROBERTSON. Interpretation of Raman spectra of disordered and amorphous carbon. J. Physiol. Rev.B, 61, 14095-14107(2000).

    [35] XIN SUN, JIANPING HE, GUOXIAN LI et al. Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. Journal of Materials Chemistry C, 1, 765-777(2013).

    [36] F TUINSTRA, L KOENIG J. Raman spectrum of graphite. Chem. Phys, 53, 1126-1130(1970).

    [37] V MURUGAN A, T MURALIGANTH, A MANTHIRAM. Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chem. Mater, 22, 5004-5006(2009).

    [38] MIN FU, QINGZE JIAO, YUN ZHAO. In situ fabrication and characterization of cobalt ferrite nanorods/graphene composites. Materials Characterization, 86, 303-315(2013).

    [39] K JEONG H, P LEE Y, J LAHAYE R et al. Evidence of graphitic AB stacking order of graphite oxides.. Am. Chem. Soc, 130, 1362-1366(2008).

    [40] C NETHRAVATHI, T NISHA, N RAVISHANKAR et al. Graphene- nanocrystalline metal sulphide composites produced by a one-pot reaction starting from graphite oxide. Carbon, 47, 2054-2059(2009).

    [41] B BOURLINOS A, D GOURNIS, D PETRIDIS et al. Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir, 19, 6050-6055(2003).

    [42] F ZHANG X, L DONG X, H HUANG et al. Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl. Phys. Lett, 89(2006).

    [43] B TIANJIAO, Z YAN, S XIAOFENG et al. A study of the electromagnetic properties of cobalt-multiwalled carbon nanotubes(co-mwcnts)composites. Materials Science And Engineering: B, 176, 906-912(2011).

    [44] A HASSAN, A KHAN M, M ASGHAR et al. Nanocrystalline Zn1-xCo0.5xNi0.5xFe2O4 ferrites: fabrication via co-precipitation route with enhanced magnetic and electrical properties.. Magn. Magn. Mater, 393, 56-77(2015).

    [45] J FRENKEL, J DORFMAN. Spontaneous and induced magnetisation in ferromagnetic bodies. Nature, 126, 274-275(1930).

    [46] HAIBO YANG, TING YE, YING LIN et al. Microwave absorbing properties of the ferrite composites based on grapheme.. Alloys Compd, 683, 567-574(2016).

    [47] A MILES P, B WESTPHAL W, A VON HIPPEL. Dielectric spectroscopy of ferromagnetic semiconductors rev. Mod. Phys, 29, 279-307(1957).

    [48] Z MA, B WANG J, F LIU Q et al. Microwave absorption of electroless Ni-Co-P-coated SiO2 powder. Appl. Surf. Sci, 255, 6629-6633(2009).

    [49] M RUTTER G, N CRAIN J, P GUISINGER N et al. Scattering and interference in epitaxial graphene. Science, 317, 219-222(2007).

    [50] L SUN S, Q HE, Y XIAO S et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater, 11, 426-431(2012).

    Zhi-Jun MA, Chang-Ye MANG, Hai-Tao ZHAO, Zhi-Hao GUAN, Liang CHENG. Comparison of Electromagnetism Behavior of Different Content Cobalt-zinc Ferrite Loaded with Graphene[J]. Journal of Inorganic Materials, 2019, 34(4): 407
    Download Citation