• Acta Optica Sinica
  • Vol. 35, Issue 9, 930002 (2015)
Sun Liqin*, Chen Bing, Kan Ruifeng, Li Mingxing, Yao Lu, Wei Min, and He Yabai
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201535.0930002 Cite this Article Set citation alerts
    Sun Liqin, Chen Bing, Kan Ruifeng, Li Mingxing, Yao Lu, Wei Min, He Yabai. High-Sensitivity Rapidly Swept Cavity Ringdown Spectroscopy for Monitoring Ambient CH4[J]. Acta Optica Sinica, 2015, 35(9): 930002 Copy Citation Text show less
    References

    [1] Wang Tieyun, Zhang Lei, Dong Lei, et al.. Minimum detection limit for methane with single laser remote sensing[J]. Chinese J Lasers, 2006, 33(3): 405-407.

    [2] G De Smedt, F de Corte, R Notele, et al.. Comparison of two standard test methods for determining explosion limits of gases at atmospheric conditions[J]. Journal of Hazardous Materials, 1999, 70(3): 105-113.

    [3] F D’amato, P Mazzinghi, F Castagnoli. Methane analyzer based on TDL′s for measurements in the lower stratosphere: Design and laboratory tests[J]. Applied Physics B, 2002, 75(2-3): 195-202.

    [4] Wei Min, Liu Jianguo, Kan Ruifeng, et al.. Study on detection of greenhouse gases based on quantum cascade laser[J]. Acta Optica Sinica, 2014, 34(12): 1230003.

    [5] A Kosterev, G Wysocki, Y Bakhirkin, et al.. Application of quantum cascade lasers to trace gas analysis[J]. Applied Physics B, 2008, 90(2): 165-176.

    [6] Yang Huinan, Guo Xiaolong, Su Mingxu. Liquid-water film-thickness online measurement in a flow channel by TDLAS[J]. Chinese J Lasers, 2014, 41(12): 1208010.

    [7] Wang Wei, Liu Wenqing, Zhang Tianshu. Continuous field measurements of stable isotopes in atmospheric water vapor by FTIR spectrometry[J]. Acta Optica Sinica, 2014, 34(1): 292-298.

    [8] T E L Smith, M J Wooster, M Tattaris, et al.. Absolute accuracy and sensitivity analysis of OP-FTIR retrievals of CO2, CH4 and CO over concentrations representative of“clean air”and“polluted plumes”[J]. Atmospheric Measurement Techniques, 2011, 4(1): 97-116.

    [9] Wei Xiuli, Lu Yihuai, Gao Minguang, et al.. Atmospheric CH4 concentrations and the correlation between CH4 and CO concentrations [J]. Spectroscopy and Spectral Analysis, 2007, 27(4): 668-670.

    [10] B J Orr, Y He. Rapidly swept continuous-wave cavity-ringdown spectroscopy[J]. Chemical Physics Letters, 2011, 512(1-3): 1-20.

    [11] B Chen, Y R Sun, Z Y Zhou, et al.. Ultrasensitive, self-calibrated cavity ring-down spectrometer for quantitative trace gas analysis[J]. Applied Optics, 2014, 53(32): 7716-7723.

    [12] Wang Chunmei, Li Jiong, Gong Tianlin, et al.. Determination of the absolute absorption cross section of oxygen forbidden transition by cavity ring down spectroscopy[J]. Acta Optica Sinica, 2007, 27(11): 2087-2090.

    [13] Tan Zhongqi, Long Xingwu, Huang Yun. High sensitivity cw-cavity ring down spectroscopy of tuning wavelength[J]. Acta Optica Sinica, 2009, 29(3): 747-751.

    [14] Y B He, R F Kan, F V Englich, et al.. Simultaneous multi-laser, multi-species trace-level sensing of gas mixtures by rapidly swept continuous-wave cavity-ringdown spectroscopy[J]. Optics Express, 2010, 18(19): 20059-20071.

    [15] H Chen, J Winderlich, C Gerbig, et al.. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4 ) using the cavity ring-down spectroscopy (CRDS) technique[J]. Atmospheric Measurement Techniques, 2010, 3: 375-386.

    [16] L Li, J M Chen, H Chen, et al.. Monitoring optical properties of aerosols with cavity ring-down spectroscopy[J]. Journal of Aerosol Science, 2011, 42(4): 277-284.

    [17] Fang Shuangxi, Zhou Lingxi, Zang Kunpeng, et al.. Measurement of atmospheric CO2 mixing ratio by cavity ring-down spectroscopy (CRDS) at the 4 background stations in China[J]. Acta Scientiae Circumstantiae, 2011, 31(3): 624-629.

    [18] Zang Kunpeng, Zhao Huade, Wang Juying, et al.. High-resolution measurement of CH4 in sea surface air based on cavity ringdown spectroscopy technique: The first trial in China seas[J]. Acta Scientiae Circumstantiae, 2013, 33(5): 1362-1366.

    [19] Y B He, C J Jin, R F Kan, et al.. Remote open-path cavity-ringdown spectroscopic sensing of trace gases in air, based on distributed passive sensors linked by km-long optical fibers[J]. Optics Express, 2014, 22(11): 13170-13189.

    [20] Wang Junzhen, Wang Yuefeng, Bai Huijun. A kind of narrow line width external cavity laser diode with wavelength stability and continuous tuning[J]. Chinese J Lasers, 2014, 41(12): 1202002.

    [21] Y He, B J Orr. Rapid measurement of cavity ringdown absorption spectra with a swept-frequency laser[J]. Applied Physics B, 2004, 79(8): 941-945.

    [22] Y He, B J Orr. Continuous-wave cavity ringdown absorption spectroscopy with a swept-frequency laser: Rapid spectral sensing of gas-phase molecules[J]. Applied Optics, 2005, 44(31): 6752-6761.

    [23] Y He, B J Orr. Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity[J]. Chemical Physics Letters, 2000, 319(1-2): 131-137.

    [24] Y He, B J Orr. Optical heterodyne signal generation and detection in cavity ringdown spectroscopy based on a rapidly swept cavity[J]. Chemical Physics Letters, 2001, 335(3-4): 215-220.

    [25] A A Istratov, O F Vyvenk. Exponential analysis in physical phenomena[J]. Review of Scientific Instruments, 1999, 70(2): 1233-1257.

    [26] Wang Dan, Hu Renzhi, Xie Pinhua, et al.. Fast and accurate extraction of ring-down time in cavity ring-down spectroscopy[J]. Spectroscopy and Spectral Analysis, 2014, 34(10): 2845-2850.

    [27] L S Rothman, I E Gordon, Y Babikov, et al.. The HITRAN2012 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130: 4-50.

    [28] Xie Donghong. Deng Dapeng, Guo Li. Line- width measurement method of narrow line width lasers[J]. Laser & Optoelectronics Progress, 2013, 50(1): 010006.

    [29] D A Long, G W Truong, R D V Zee, et al.. Frequency-agile, rapid scanning spectroscopy: Absorption sensitivity of 2 × 10-12 cm-1 Hz-1/2 with a tunable diode laser[J]. Applied Physics B, 2014, 114(4): 489-495.

    [30] K Samir, A Campargue. Cavity ring down spectroscopy with 5×10-13 cm-1 sensitivity[J]. The Journal of Chemical Physics, 2012, 137(23): 234201.

    [31] H Muramatsu. Methane emission in large cities[J]. TAO, 1995, 6(3): 367-377.

    [32] L F Yu, H Wang, G S Wang, et al.. A comparison of methane emission measurements using eddy covariance and manual and automatic chamber-based techniques in Tibetan Plateau alpine wetland[J]. Environmental Pollution, 2013, 181: 81-90.

    CLP Journals

    [1] Ji Muyao, Duan Yafan, Niu Yueping, Gong Shangqing. Cavity Ringdown Spectroscopy Based on V-Type Electromagnetically Induced Transparency[J]. Acta Optica Sinica, 2016, 36(11): 1127001

    Sun Liqin, Chen Bing, Kan Ruifeng, Li Mingxing, Yao Lu, Wei Min, He Yabai. High-Sensitivity Rapidly Swept Cavity Ringdown Spectroscopy for Monitoring Ambient CH4[J]. Acta Optica Sinica, 2015, 35(9): 930002
    Download Citation