• Laser & Optoelectronics Progress
  • Vol. 60, Issue 2, 0200003 (2023)
Mingxuan Hou1、2 and Changlun Hou1、2、*
Author Affiliations
  • 1Institute of Carbon Neutrality and New Energy, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
  • 2School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
  • show less
    DOI: 10.3788/LOP212615 Cite this Article Set citation alerts
    Mingxuan Hou, Changlun Hou. Application of Correlation Imaging and Its Latest Progress[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0200003 Copy Citation Text show less
    References

    [1] Pittman T B, Shih Y H, Strekalov D V et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 52, R3429-R3432(1995).

    [2] Bennink R S, Bentley S J, Boyd R W. “Two-Photon” coincidence imaging with a classical source[J]. Physical Review Letters, 89, 113601-113604(2002).

    [3] Scarcelli G, Berardi V, Shih Y H. Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?[J]. Physical Review Letters, 96, 063602(2006).

    [4] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 78, 061802(2008).

    [5] Khamoushi S M M, Nosrati Y, Tavassoli S H. Sinusoidal ghost imaging[J]. Optics Letters, 40, 3452-3455(2015).

    [6] Ferri F, Magatti D, Lugiato L A et al. Differential ghost imaging[J]. Physical Review Letters, 104, 253603(2010).

    [7] Sun B Q, Welsh S S, Edgar M P et al. Normalized ghost imaging[J]. Optics Express, 20, 16892-16901(2012).

    [8] Zhang C, Guo S X, Cao J S et al. Object reconstitution using pseudo-inverse for ghost imaging[J]. Optics Express, 22, 30063-30073(2014).

    [9] Gong W L. High-resolution pseudo-inverse ghost imaging[J]. Photonics Research, 3, 234-237(2015).

    [10] Yang C, Wang C L, Guan J et al. Scalar-matrix-structured ghost imaging[J]. Photonics Research, 4, 281-285(2016).

    [11] Yao X R, Yu W K, Liu X F et al. Iterative denoising of ghost imaging[J]. Optics Express, 22, 24268-24275(2014).

    [12] Wu H, Zhang X M, Gan J Q et al. High-quality correspondence imaging based on sorting and compressive sensing technique[J]. Laser Physics Letters, 13, 115205(2016).

    [13] Yu W K, Li M F, Yao X R et al. Adaptive compressive ghost imaging based on wavelet trees and sparse representation[J]. Optics Express, 22, 7133-7144(2014).

    [14] Sun S, Gu J H, Lin H Z et al. Gradual ghost imaging of moving objects by tracking based on cross correlation[J]. Optics Letters, 44, 5594-5597(2019).

    [15] Yang Z, Zhang W X, Zhang M C et al. Instant ghost imaging: improving robustness for ghost imaging subject to optical background noise[J]. OSA Continuum, 3, 391-400(2020).

    [16] Wang L, Zhao S M. Fast reconstructed and high-quality ghost imaging with fast Walsh–Hadamard transform[J]. Photonics Research, 4, 240-244(2016).

    [17] Huang J, Shi D F, Yuan K E et al. Computational-weighted Fourier single-pixel imaging via binary illumination[J]. Optics Express, 26, 16547-16559(2018).

    [18] Ryczkowski P, Barbier M, Friberg A T et al. Ghost imaging in the time domain[J]. Nature Photonics, 10, 167-170(2016).

    [19] Devaux F, Moreau P A, Denis S et al. Computational temporal ghost imaging[J]. Optica, 3, 698-701(2016).

    [20] Lucas A, Iliadis M, Molina R et al. Using deep neural networks for inverse problems in imaging: beyond analytical methods[J]. IEEE Signal Processing Magazine, 35, 20-36(2018).

    [21] Li Y, Xue Y, Tian L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media[J]. Optica, 5, 1181-1190(2018).

    [22] Higham C F, Murray-Smith R, Padgett M J et al. Deep learning for real-time single-pixel video[J]. Scientific Reports, 8, 2369(2018).

    [23] He Y C, Wang G, Dong G X et al. Ghost imaging based on deep learning[J]. Scientific Reports, 8, 6469(2018).

    [24] Lyu M, Wang W, Wang H et al. Deep-learning-based ghost imaging[J]. Scientific Reports, 7, 17865(2017).

    [25] Xu Z H, Chen W, Penuelas J et al. 1000 fps computational ghost imaging using LED-based structured illumination[J]. Optics Express, 26, 2427-2434(2018).

    [26] Gatti A, Brambilla E, Bache M et al. Ghost imaging with thermal light: comparing entanglement and classical correlation[J]. Physical Review Letters, 93, 093602(2004).

    [27] Gao C, Wang X Q, Wang Z F et al. Optimization of computational ghost imaging[J]. Physical Review A, 96, 023838(2017).

    [28] Pelliccia D, Rack A, Scheel M et al. Experimental X-ray ghost imaging[J]. Physical Review Letters, 117, 113902(2016).

    [29] Yu H, Lu R H, Han S S et al. Fourier-transform ghost imaging with hard X rays[J]. Physical Review Letters, 117, 113901(2016).

    [30] Zhang A X, He Y H, Wu L A et al. Table-top X-ray ghost imaging with ultra-low radiation[J]. Optica, 5, 374-377(2018).

    [31] Stantchev R I, Sun B Q, Hornett S M et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector[J]. Science Advances, 2, e1600190(2016).

    [32] Li S, Cropp F, Kabra K et al. Electron ghost imaging[J]. Physical Review Letters, 121, 114801(2018).

    [33] Huang J, Shi D F. Multispectral computational ghost imaging with multiplexed illumination[J]. Journal of Optics, 19, 075701(2017).

    [34] Cui L J, Zhao C Q, Xu W D et al. Study on the measurement matrix in intensity correlation imaging laser radar[J]. Chinese Journal of Lasers, 40, 0918002(2013).

    [35] Zhao S M, Wang L, Liang W Q et al. High performance optical encryption based on computational ghost imaging with QR code and compressive sensing technique[J]. Optics Communications, 353, 90-95(2015).

    [36] Zhang Y Z. Experimental study of correlated imaging and algorithm design[D], 20-21(2014).

    [37] Cai Y J, Zhu S Y. Ghost imaging with incoherent and partially coherent light radiation[J]. Physical Review E, 71, 056607(2005).

    [38] Clemente P, Durán V, Torres-Company V et al. Optical encryption based on computational ghost imaging[J]. Optics Letters, 35, 2391-2393(2010).

    [39] Wu J J, Xie Z W, Liu Z J et al. Multiple-image encryption based on computational ghost imaging[J]. Optics Communications, 359, 38-43(2016).

    [40] Li X Y, Meng X F, Yang X L et al. Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme[J]. Optics and Lasers in Engineering, 102, 106-111(2018).

    [41] Zhang L H, Yuan X, Wang K M et al. Multiple-image encryption mechanism based on ghost imaging and public key cryptography[J]. IEEE Photonics Journal, 11, 7904014(2019).

    [42] Erkmen B I. Computational ghost imaging for remote sensing[J]. Journal of the Optical Society of America A, 29, 782-789(2012).

    [43] Zhao C Q, Gong W L, Chen M L et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 101, 141123(2012).

    [44] Chen M L, Li E R, Gong W L et al. Ghost imaging lidar via sparsity constraints in real atmosphere[J]. Optics & Photonics Journal, 3, 83-85(2013).

    [45] Hardy N D, Shapiro J H. Computational ghost imaging versus imaging laser radar for three dimensional imaging[J]. Physical Review A, 87, 023820(2013).

    [46] Gong W L, Zhao C Q, Yu H et al. Three-dimensional ghost imaging lidar via sparsity constraint[J]. Scientific Reports, 6, 26133(2016).

    [47] Gong W L, Wang C L, Mei X D et al. Recent research progress and thoughts on GISC lidar with respect to practical applications[J]. Infrared and Laser Engineering, 47, 0302001(2018).

    [48] Zhang C, Gong W L, Han S S. Ghost imaging for moving targets and its application in remote sensing[J]. Chinese Journal of Lasers, 39, 1214003(2012).

    [49] Li E R, Bo Z W, Chen M L et al. Ghost imaging of a moving target with an unknown constant speed[J]. Applied Physics Letters, 104, 251120(2014).

    [50] Li X H, Deng C J, Chen M L et al. Ghost imaging for an axially moving target with an unknown constant speed[J]. Photonics Research, 3, 153-157(2015).

    [51] Wang C L, Mei X D, Pan L et al. Airborne near infrared three-dimensional ghost imaging lidar via sparsity constraint[J]. Remote Sensing, 10, 732(2018).

    [52] Deng C J, Pan L, Wang C L et al. Performance analysis of ghost imaging lidar in background light environment[J]. Photonics Research, 5, 431-435(2017).

    [53] Ma S, Liu Z T, Wang C L et al. Ghost imaging LiDAR via sparsity constraints using push-broom scanning[J]. Optics Express, 27, 13219-13228(2019).

    [54] Song M Y, Li G L, Yu Y J et al. Research review on intensity correlation imaging in scattering media[J]. Laser & Optoelectronics Progress, 58, 1011019(2021).

    [55] Hu Y D, Cheng Z D, Zeng B et al. Computational ghost imaging in smoke media[J]. Laser & Optoelectronics Progress, 58, 1011029(2021).

    [56] Hu Y D, Cheng Z D, Liang Z Y et al. Experimental study on laser computational ghost imaging through smoke media[J]. Chinese Journal of Lasers, 48, 0401020(2021).

    [57] Gong W L, Han S S. Correlated imaging in scattering media[J]. Optics Letters, 36, 394-396(2011).

    [58] Bina M, Magatti D, Molteni M et al. Backscattering differential ghost imaging in turbid media[J]. Physical Review Letters, 110, 083901(2013).

    [59] Tajahuerce E, Durán V, Clemente P et al. Image transmission through dynamic scattering media by single-pixel photodetection[J]. Optics Express, 22, 16945-16955(2014).

    [60] Zhao M, Uhlmann J, Lanzagorta M et al. Passive ghost imaging using caustics modeling[J]. Proceedings of SPIE, 10188, 101880H(2017).

    [61] Le M N, Wang G, Zheng H B et al. Underwater computational ghost imaging[J]. Optics Express, 25, 22859-22868(2017).

    [62] Zhang Q W, Li W D, Liu K et al. Effect of oceanic turbulence on the visibility of underwater ghost imaging[J]. Journal of the Optical Society of America A, 36, 397-402(2019).

    [63] Zhang Y, Li W D, Wu H Z et al. High-visibility underwater ghost imaging in low illumination[J]. Optics Communications, 441, 45-48(2019).

    [64] Luo C L, Wan W X, Chen S Y et al. High-quality underwater computational ghost imaging with shaped Lorentz sources[J]. Laser Physics Letters, 17, 105209(2020).

    [65] Sun B, Edgar M P, Bowman R et al. 3D computational imaging with single-pixel detectors[J]. Science, 340, 844-847(2013).

    [66] Sun M J, Edgar M P, Gibson G M et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature Communications, 7, 12010(2016).

    [67] Qian Y, He R Q, Chen Q et al. Adaptive compressed 3D ghost imaging based on the variation of surface normals[J]. Optics Express, 27, 27862-27872(2019).

    [68] Soltanlou K, Latifi H. Three-dimensional imaging through scattering media using a single pixel detector[J]. Applied Optics, 58, 7716-7726(2019).

    [69] Bo Z W, Gong W L, Han S S. Focal-plane three-dimensional imaging method based on temporal ghost imaging: a proof of concept simulation[J]. Journal of the Optical Society of America A, 37, 417-421(2020).

    [70] Huang J, Shi D F, Yuan K E et al. Three-dimensional Fourier ghost imaging[J]. Optik, 219, 165149(2020).

    [71] Pelliccia D, Rack A, Scheel M et al. Experimental X-ray ghost imaging[J]. Physical Review Letters, 117, 113902(2016).

    [72] He Y H, Zhang A X, Yu W K et al. Energy-selective X-ray ghost imaging[J]. Chinese Physics Letters, 37, 71-74(2020).

    [73] Sun Z, Tuitje F, Spielmann C. Toward high contrast and high-resolution microscopic ghost imaging[J]. Optics Express, 27, 33652-33661(2019).

    [74] Rossman U, Tenne R, Solomon O et al. Rapid quantum image scanning microscopy by joint sparse reconstruction[J]. Optica, 6, 1290-1296(2019).

    [75] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Applied Physics Letters, 95, 131110(2009).

    [76] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 79, 053840(2009).

    [77] Wang Y W, Liu Y, Suo J L et al. High speed computational ghost imaging via spatial sweeping[J]. Scientific Reports, 7, 45325(2017).

    [78] Czajkowski K M, Pastuszczak A, Kotyński R. Real-time single-pixel video imaging with Fourier domain regularization[J]. Optics Express, 26, 20009-20022(2018).

    [79] Janassek P, Blumenstein S, Elsäßer W. Ghost spectroscopy with classical thermal light emitted by a superluminescent diode[J]. Physical Review Applied, 9, 021001(2018).

    [80] Ota S, Horisaki R, Kawamura Y et al. Ghost cytometry[J]. Science, 360, 1246-1251(2018).

    [81] Dou L Y, Cao D Z, Gao L et al. Dark-field ghost imaging[J]. Optics Express, 28, 37167-37176(2020).

    Mingxuan Hou, Changlun Hou. Application of Correlation Imaging and Its Latest Progress[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0200003
    Download Citation