• Journal of Infrared and Millimeter Waves
  • Vol. 40, Issue 4, 530 (2021)
Ruo-Yao LI1、2, Bo ZHANG1、2, and Bin WANG1、2、*
Author Affiliations
  • 1Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University, Shanghai 200433, China
  • 2Research Center of Smart Networks and Systems, School of Information Science and Technology, Fudan University, Shanghai 200433, China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2021.04.012 Cite this Article
    Ruo-Yao LI, Bo ZHANG, Bin WANG. Remote sensing image scene classification based on multilayer feature context encoding network[J]. Journal of Infrared and Millimeter Waves, 2021, 40(4): 530 Copy Citation Text show less
    References

    [1] F Hu, G Xia, J Hu et al. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sensing, 7, 14680-14707(2015).

    [2] D Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60, 91-110(2004).

    [3] N Dalal, B Triggs. Histograms of oriented gradients for human detection(2005).

    [4] A Krizhevsky, I Sutskever, G Hinton. ImageNet classification with deep convolutional neural networks(2012).

    [5] K Simonyan, A Zisserman. Very deep convolutional networks for large-scale image recognition(2014).

    [6] O A B Penatti, K Nogueira, J A Dos Santos. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains(2015).

    [7] G Cheng, C Yang, X Yao et al. When deep learning meets metric learning: remote sensing image scene classification via learning discriminative CNNs. IEEE Trans. Geosci. Remote Sens., 56, 2811-2821(2018).

    [8] T Lin, P Dollár, R Girshick et al. Feature pyramid networks for object detection(2017).

    [9] Y LeCun, Y Bengio, G Hinton. Deep learning. Nature, 521, 436-444(2015).

    [10] W Liu, D Anguelov, D Erhan et al. SSD: single shot multibox detector(2016).

    [11] N He, L Fang, S Li et al. Remote sensing scene classification using multilayer stacked covariance pooling. IEEE Trans. Geosci. Remote Sens., 56, 6899-6910(2018).

    [12] X Lu, H Sun, X Zheng. A feature aggregation convolutional neural network for remote sensing scene classification. IEEE Trans. Geosci. Remote Sens., 57, 7894-7906(2019).

    [13] G Huang, Z Liu, L Van der Maaten et al. Densely connected convolutional networks(2017).

    [14] S Ioffe, C Szegedy. Batch normalization: accelerating deep network training by reducing internal covariate shift(2015).

    [15] J Xie, N He, L Fang et al. Scale-free convolutional neural network for remote sensing scene classification. IEEE Trans. Geosci. Remote Sens., 57, 6916-6928(2019).

    [16] C Szegedy, W Liu, Y Jia et al. Going deeper with convolutions(2015).

    [17] G Xia, J Hu, F Hu et al. AID: a benchmark data set for performance evaluation of aerial scene classification. IEEE Trans. Geosci. Remote Sens., 55, 3965-3981(2017).

    [18] G Cheng, J Han, X Lu. Remote sensing image scene classification: benchmark and state of the art. Proceedings of the IEEE, 105, 1865-1883(2017).

    [19] K He, X Zhang, S Ren et al. Deep residual learning for image recognition(2016).

    [20] B Zhou, A Khosla, A Lapedriza et al. Learning deep features for discriminative localization(2016).

    Ruo-Yao LI, Bo ZHANG, Bin WANG. Remote sensing image scene classification based on multilayer feature context encoding network[J]. Journal of Infrared and Millimeter Waves, 2021, 40(4): 530
    Download Citation