• Laser & Optoelectronics Progress
  • Vol. 54, Issue 10, 100005 (2017)
Wang Yongsheng1、2、*, Wang Yuncai1、2, and Guo Yanqiang1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop54.100005 Cite this Article Set citation alerts
    Wang Yongsheng, Wang Yuncai, Guo Yanqiang. Research Progress of the Photonic Integrated Chaotic Lasers[J]. Laser & Optoelectronics Progress, 2017, 54(10): 100005 Copy Citation Text show less
    References

    [1] Wang Yuncai. Generation and applications of chaotic laser[J]. Laser & Optoelectronics Progress, 2009, 46(4): 13-21.

    [2] Sciamanna M, Shore K A. Physics and applications of laser diode chaos[J]. Nature Photonics, 2015, 9(3): 151-162.

    [3] Argyris A, Syvridis D, Larger L, et al. Chaos-based communications at high bit rates using commercial fibre-optic links[J]. Nature, 2005, 438(7066): 343-346.

    [4] Soriano M C, García-Ojalvo J, Mirasso C R, et al. Complex photonics: dynamics and applications of delay-coupled semiconductors lasers[J]. Review of Modern Physics, 2013, 85(1): 421-470.

    [5] Zhao Qingchun, Wang Yuncai. Research progress in security analysis of chaotic optical communication[J]. Laser & Optoelectronics Progress, 2010, 47(3): 030602.

    [6] Uchida A, Amano K, Inoue M, et al. Fast physical random bit generation with chaotic semiconductor lasers[J]. Nature Photonics, 2008, 2(12): 728-732.

    [7] Reidler I, Aviad Y, Rosenbluh M, et al. Ultrahigh-speed random number generation based on a chaotic semiconductor laser[J]. Physical Review Letters, 2009, 103(2): 024102.

    [8] Li Pu, Wang Yuncai. Research progress in physical random number generator based on laser chaos for high-speed secure communication[J]. Laser & Optoelectronics Progress, 2014, 51(6): 060002.

    [9] Yan Qiurong, Cao Qingshan, Zhao Baosheng, et al. High speed random number generator based on digitizing bandwidth-enhanced chaotic laser signal[J]. Chinese J Lasers, 2015, 42(11): 1102004.

    [10] Lin F Y, Liu J M. Chaotic lidar[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(5): 991-997.

    [11] Wang A, Wang N, Yang Y, et al. Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser[J]. Journal of Lightwave Technology, 2012, 30(21): 3420-3426.

    [12] Wang Y, Wang B, Wang A. Chaotic correlation optical time domain reflectometer utilizing laser diode[J]. IEEE Photonics Technology Letters, 2008, 20(19): 1636-1638.

    [13] Harayama T, Sunada S, Yoshimura K, et al. Fast nondeterministic random-bit generation using on-chip chaos lasers[J]. Physical Review A, 2011, 83(3): 031803.

    [14] Takahashi R, Akizawa Y, Uchida A, et al. Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation[J]. Optics Express, 2014, 22(10): 11727-11740.

    [15] Yu L, Lu D, Pan B, et al. Monolithically integrated amplified feedback lasers for high-quality microwave and broadband chaos generation[J]. Journal of Lightwave Technology, 2014, 32(20): 3595-3601.

    [16] Pan B, Lu D, Zhao L. Broadband chaos generation using monolithic dual-mode laser with optical feedback[J]. IEEE Photonics Technology Letters, 2015, 27(23): 2516-2519.

    [17] Argyris A, Hamacher M, Chlouverakis K E, et al. Photonic integrated device for chaos applications in communications[J]. Physical Review Letters, 2008, 100(19): 194101.

    [18] Chlouverakis K E, Argyris A, Bogris A, et al. Hurst exponents and cyclic scenarios in a photonic integrated circuit[J]. Physical Review E, 2008, 78(6): 066215.

    [19] Syvridis D, Argyris A, Bogris A, et al. Integrated devices for optical chaos generation and communication applications[J]. IEEE Journal of Quantum Electronics, 2009, 45(11): 1421-1428.

    [20] Argyris A, Grivas E, Hamacher M, et al. Chaos-on-a-chip secures data transmission in optical fiber links[J]. Optics Express, 2010, 18(5): 5188-5198.

    [21] Argyris A, Deligiannidis S, Pikasis E, et al. Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit[J]. Optics Express, 2010, 18(18): 18763-18768.

    [22] Bogris A, Argyris A, Syvridis D. Encryption efficiency analysis of chaotic communication systems based on photonic integrated chaotic circuits[J]. IEEE Journal of Quantum Electronics, 2010, 46(10): 1421-1429.

    [23] Liu C, Di Falco A, Molinari D, et al. Enhanced energy storage in chaotic optical resonators[J]. Nature Photonics, 2013, 7(6): 473-478.

    [24] Sunada S, Shinohara S, Fukushima T, et al. Signature of wave chaos in spectral characteristics of microcavity lasers[J]. Physical Review Letters, 2016, 116(20): 203903.

    [25] Kapsalis A, Stamataki I, Mesaritakis C, et al. Design and experimental evaluation of active-passive integrated microring lasers: threshold current and spectral properties[J]. IEEE Journal of Quantum Electronics, 2011, 47(12): 1557-1564.

    [26] Kapsalis A, Stamataki I, Mesaritakis C, et al. Design and experimental evaluation of active-passive integrated microring lasers: noise properties[J]. IEEE Journal of Quantum Electronics, 2012, 48(2): 99-106.

    [27] Toomey J P, Kane D M, McMahon C, et al.Integrated semiconductor laser with optical feedback: transition from short to long cavity regime[J]. Optics Express, 2015, 23(14): 18754-18762.

    [28] Sunada S, Harayama T, Arai K, et al. Chaos laser chips with delayed optical feedback using a passive ring waveguide[J]. Optics Express, 2011, 19(7): 5713-5724.

    [29] Harayama T, Sunada S, Yoshimura K, et al. Theory of fast nondeterministic physical random-bit generation with chaotic lasers[J]. Physical Review E, 2012, 85(4): 046215.

    [30] Sunada S, Shinohara S, Fukushima T, et al. Signature of wave chaos in spectral characteristics of microcavity lasers[J]. Physical Review Letters, 2016, 116(20): 203903.

    [31] Tronciu V Z, Mirasso C R, Colet P. Chaos-based communications using semiconductor lasers subject to feedback from an integrated double cavity[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41(15): 155401.

    [32] Tronciu V Z, Mirasso C, Colet P, et al. Chaos generation, synchronization and communications using an integrated source with an air gap[C]. European Conference on Lasers and Electro-Optics, 2009: CB_P27.

    [33] Tronciu V Z, Mirasso C R, Colet P, et al. Chaos generation and synchronization using an integrated source with an air gap[J]. IEEE Journal of Quantum Electronics, 2010, 46(12): 1840-1846.

    [34] Wu J G, Zhao L J, Wu Z M, et al. Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip[J]. Optics Express, 2013, 21(20): 23358-23364.

    [35] Yin X M, Zhong Z Q, Zhao L J, et al. Wide bandwidth chaotic signal generation in a monolithically integrated semiconductor laser via optical injection[J]. Optics Communications, 2015, 355: 551-557.

    [36] Zhu W Q, Wu Z M, Zhong Z Q, et al. Dynamics of a monolithically integrated semiconductor laser under optical injection[J]. IEEE Photonics Technology Letters, 2015, 27(20): 2119-2122.

    [37] Liu D, Sun C, Xiong B, et al. Suppression of chaos in integrated twin DFB lasers for millimeter-wave generation[J]. Optics Express, 2013, 21(2): 2444-2451.

    [38] Liu D, Sun C, Xiong B, et al. Nonlinear dynamics in integrated coupled DFB lasers with ultra-short delay[J]. Optics Express, 2014, 22(5): 5614-5622.

    [39] Dou X, Yin H, Tang C, et al. Structure design and performance simulation on monolithic integrated chaotic-optical transmitter with photonic crystal waveguide in external cavity[J]. Optik-International Journal for Light and Electron Optics, 2014,125(15): 3961-3965.

    Wang Yongsheng, Wang Yuncai, Guo Yanqiang. Research Progress of the Photonic Integrated Chaotic Lasers[J]. Laser & Optoelectronics Progress, 2017, 54(10): 100005
    Download Citation