• Journal of Innovative Optical Health Sciences
  • Vol. 8, Issue 5, 1550018 (2015)
Shupeng Liu1、2、*, Na Chen1, Fufei Pang1, Zhengyi Chen1, and Tingyun Wang1
Author Affiliations
  • 1Key Laboratory of Specialty Fiber Optics and Optical Access Networks Shanghai University, 149 Yanchang Road Shanghai 200072, P. R. China
  • 2Institute of Biomedical Engineering, Shanghai University 149 Yanchang Road, Shanghai 200072, P. R. China
  • show less
    DOI: 10.1142/s1793545815500182 Cite this Article
    Shupeng Liu, Na Chen, Fufei Pang, Zhengyi Chen, Tingyun Wang. Carbon-coated magnetic particles increase tissue temperatures after laser irradiation[J]. Journal of Innovative Optical Health Sciences, 2015, 8(5): 1550018 Copy Citation Text show less
    References

    [1] A. K. Gupta, M. Gupta, "Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications," Biomaterials 26, 3995–4021 (2005).

    [2] D. K. Kim, Y. Zhang, J. Kehr, T. Klason, B. Bjelke, M. Muhammed, "Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain," J. Magn. Magn. Mater. 225, 256–261 (2001).

    [3] B. Thiesen, A. Jordan, "Clinical applications of magnetic nanoparticles for hyperthermia," Int. J. Hyperthermia 24(6), 467–474 (2008).

    [4] C. C. Berry, A. S. G. Curtis, "Functionalisation of magnetic nanoparticles for applications in biomedicine," J. Phys. D: Appl. Phys. 36, R198– R206 (2003).

    [5] S. Purushotham, P. E. J. Chang, H. Rumpel, I. H. C. Kee, R. T. Ng, P. K. H. Chow et al., "Thermoresponsive core–shellmagnetic nanoparticles for combined modalities of cancer therapy," Nanotechnology 20(30), 1–11 (2009).

    [6] R. Nesper, A. Ivantchenko, F. Krumeich, "Synthesis and characterization of carbon-based nanoparticles and highly magnetic nanoparticles with carbon coatings," Adv. Funct. Mater. 16, 296–305 (2006).

    [7] H. Cao, G. Huang, S. Xuan, Q. Wu, F. Gu, C. Li, "Synthesis and characterization of carbon-coated iron core/shell nanostructures," J. Alloy Compd. 448, 272–276 (2008).

    [8] P. Wust, B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess et al., "Hyperthermia in combined treatment of cancer," Lancet Oncol. 3, 488–497 (2002).

    [9] D. L. Liu, S. Andersson-Engels, C. Sturesson, K. Svanberg, C. H. H kansson, S. Svanberg, "Tumour vessel damage resulting from laser-induced hyperthermia alone and in combination with photodynamic therapy," Cancer Lett. 111, 157–165 (1997).

    [10] J. Eichler, J. Liebetruth, R. A. London, L. Ziegenhagen, "Temperature distribution for combined laser hyperthermia–photodynamic therapy in the esophagus," Med. Eng. Phys. 22, 307–312 (2000).

    [11] Y. L. Klaver, T. Hendriks, R. M. Lomme, H. J. Rutten, R. P. Bleichrodt, I. H. de Hingh, "Hyperthermia and intraperitoneal chemotherapy for the treatment of peritoneal carcinomatosis: An experimental study," Ann Surg. 254(1), 125–130 (2011).

    [12] W. Rao, Z. S. Deng, J. Liu, "A review of hyperthermia combined with radiotherapy/chemotherapy on malignant tumors," Crit. Rev. Biomed. Eng. 38(1), 101–106 (2010).

    [13] T. M. Zagar, K. A. Higgins, E. F. Miles, Z. Vujaskovic, M. W. Dewhirst, R. W. Clough et al., "Durable palliation of breast cancer chest wall recurrence with radiation therapy, hyperthermia, and chemotherapy," Radiother. Oncol. 97(3), 535–540 (2010).

    [14] T. Kobayashi, "Cancer hyperthermia using magnetic nanoparticles," Biotechnol J. 6(11), 1342–1347 (2011).

    [15] Y. S. Chang, S. Savitha, S. Sadhasivam, C. K. Hsu, F. H. Lin, "Fabrication, characterization, and application of greigite nanoparticles for cancer hyperthermia," J. Colloid Interface Sci. 363(1), 314–319 (2011).

    [16] L. A. Dombrovsky, V. Timchenko, M. Jackson, G. H. Yeoh, "A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells," Int. J. Heat Mass Transfer 54, 5459– 5469 (2011).

    [17] S. Soni, H. Tyagi, R. A. Taylor, A. Kumar, "Role of optical coefficients and healthy tissue-sparing characteristics in gold nanorod-assisted thermal therapy," Int. J. Hyperthermia 29(1), 87–97 (2013).

    [18] C. Iancu, L. Mocan, "Advances in cancer therapy through the use of carbon nanotube-mediated targeted hyperthermia," Int. J. Nanomedicine 6, 1675– 1684 (2011).

    [19] D. K. Chatterjee, P. Diagaradjane, S. Krishnan, "Nanoparticle-mediated hyperthermia in cancer therapy," Ther. Deliv. 2(8), 1001–1014 (2011).

    [20] M. Chu, Y. Shao, J. Peng, X. Dai, H. Li, Q.Wu et al., "Near-infrared laser light mediated cancer therapy by photothermal effect ofFe3O4magnetic nanoparticles," Biomaterials 34(16), 4078–4088 (2013).

    [21] H. F. Rodrigues, F. M. Mello, L. C. Branquinho, N. Zufelato, E. P. Silveira-Lacerda, A. F. Bakuzis, "Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration," Int. J. Hyperthermia 29(8), 752–767 (2013).

    [22] E. Al-Fakih, N. A. Abu Osman, F. R. M. Adikan, "The use of fiber Bragg grating sensors in biomechanics and rehabilitation applications: The stateof- the-art and ongoing research topics," Sensors (Basel) 12(10), 12890–12926 (2012).

    [23] A. A. Abushagur, N. Arsad, M. I. Reaz, A. A. Bakar, "Advances in bio-tactile sensors for minimally invasive surgery using the fibre Bragg grating force sensor technique: A survey," Sensors (Basel) 14(4), 6633–6665 (2014).

    [24] D. Tosi, E. G. Macchi, M. Gallati, G. Braschi, A. Cigada, S. Rossi, G. Leen, E. Lewis, "Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver," Biomed. Opt. Express 5(6), 1799–1811 (2014).

    [25] F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, E. Schena, "Optical fiber-based MR-compatible sensors for medical applications: An overview," Sensors (Basel) 13(10), 14105–14120 (2013).

    [26] . Burak, J. Wei, Y. Osamu, F. Kiyoshi, N. Zenbe- E, "Preparation and characterization of carboncoated ZnO and CaO powders by pyrolysis of PVA," J. Mater. Sci. 42(3), 983–988 (2007).

    [27] J. P. Williams, P. Southern, A. Lissina, H. C. Christian, A. K. Sewell, R. Phillips et al., "Application of magnetic field hyperthermia and superparamagnetic iron oxide nanoparticles to HIV- 1-specific T-cell cytotoxicity," Int. J. Nanomedicine 8, 2543–2554 (2013).

    [28] I. Hilger, "In vivo applications of magnetic nanoparticle hyperthermia," Int. J. Hyperthermia 29(8), 828–834 (2013).

    Shupeng Liu, Na Chen, Fufei Pang, Zhengyi Chen, Tingyun Wang. Carbon-coated magnetic particles increase tissue temperatures after laser irradiation[J]. Journal of Innovative Optical Health Sciences, 2015, 8(5): 1550018
    Download Citation