• Journal of Innovative Optical Health Sciences
  • Vol. 2, Issue 3, 261 (2009)
EKATERINA BORISOVA1、*, ELFRIDA CARSTEA2, LUMINITA CRISTESCU2, ELMIRA PAVLOVA3, NIKOLAY HADJIOLOV3, PETRANKA TROYANOVA3, and LATCHEZAR AVRAMOV1
Author Affiliations
  • 1Institute of Electronics, Bulgarian Academy of Sciences 72, Tsarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria
  • 2National Institute for Optoelectronics, Atomistilor 409 077125 Magurele, Romania
  • 3National Oncological Center, 6, Plovdivsko Pole Str. 1156 Sofia, Bulgaria
  • show less
    DOI: Cite this Article
    EKATERINA BORISOVA, ELFRIDA CARSTEA, LUMINITA CRISTESCU, ELMIRA PAVLOVA, NIKOLAY HADJIOLOV, PETRANKA TROYANOVA, LATCHEZAR AVRAMOV. LIGHT-INDUCED FLUORESCENCE SPECTROSCOPY AND OPTICAL COHERENCE TOMOGRAPHY OF BASAL CELL CARCINOMA[J]. Journal of Innovative Optical Health Sciences, 2009, 2(3): 261 Copy Citation Text show less
    References

    [1] S. Danon, Z. Valerianova, T. Ivanova, Cancer Incidence in Bulgaria 2004, volume XV, Bulgarian National Cancer Registry, Publisher “AVIS-24” Ltd. (2007).

    [2] E. Borisova, E. Nikolova, P. Troyanova, L. Avramov, “Autofluorescence and diffuse reflectance spectroscopy of pigment disorders in human skin,” JOAM 10, 717–722 (2008).

    [3] S. Svanberg, “Environmental and medical applications of photonic interactions,” Physica Scripta T110, 39–50 (2004).

    [4] L. Bachmann, D. Zezell, A. da Costa Ribeiro, L. Gomes, A. Ito, “Fluorescence spectroscopy of biological tissues — A review,” Appl. Spectr. Rev. 41, 575–590 (2006).

    [5] Y. Sinichkin, S. Utz, A. Mavliutov, H. Pilipenko, “In vivo fluorescence spectroscopy of the human skin: Experiments and models,” J. Biomed. Opt. 3, 201–211 (1998).

    [6] R. Na, I. Stender, L. Ma, H.Wulf, “Autofluorescence spectrum of skin: Component bands and body site variations,” Skin Res. Tech. 6, 112–117 (2000).

    [7] N. Kollias, G. Zonios, G. Stamatas, “Fluorescence spectroscopy of skin,” Vibrational Spectroscopy 28, 17–23 (2002).

    [8] V. Mantareva, D. Petrova, L. Avramov, I. Angelov, E. Borisova, M. Peeva, D. Woehrle, “Long wavelength absorbing cationic Zn(II)-phthalocyanines as fluorescent contrast agents for B16 pigmented melanoma,” J. Porphyr. Phthalocyan. 9, 47–53 (2005).

    [9] S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Malignant tumor and atherosclerotic plaque diagnosis using laser-induced fluorescence,” IEEE J. Quantum Elect. 26, 2207– 2217 (1990).

    [10] T. Vo-Dinh, B. Cullum, “Fluorescence spectroscopy for biomedical diagnostics,” Chap. 28 in Biomedical Photonics Handbook, T. Vo-Dinh, Ed., CRC Press (2003).

    [11] V. Mantareva, V. Kussovski, I. Angelov, E. Borisova, L. Avramov, D. Woehrle, “Photodynamic activity of water-soluble phthalocyanine zinc(II) complexes against pathogenic microorganisms,” Bioorg. Med. Chem. 15, 4829–4835 (2007).

    [12] J. Moan, L. W. Ma, V. Iani, “On the pharmacokinetics on topically applied 5-aminolevulinic acid and two of its esters,” Int. J. Cancer 92, 139–143 (2001).

    [13] H. Ahn, S. Kim, Y. Kye, “Fluorescence digital photography of acne using a light-emitting diode illuminator,” Skin Res. Tech. 12, 289–291 (2006).

    [14] E. Borisova, L. Avramov, “Laser system for optical biopsy and in vivo study of the human skin,” Proc. SPIE 4397, 405–409 (2001).

    [15] H. Li, B. Standish, A. Mariampillai, N. Munce, Y. Mao, S. Chiu, N. Marcon, B. Wilson, A. Vitkin, V. Yang, “Feasibility of interstitial doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy,” Las. Surg. Med. 38, 754–761 (2006).

    [16] S. Boppart, W. Luo, D. Marks, K. Singletary, “Optical coherence tomography: Feasibility for basic research and image-guided surgery of breast cancer,” Breast Cancer Res. Treat. 84, 85–97 (2004).

    [17] W. Jung, B. Kao, K. Kelly, L. Liaw, J. Nelson, Z. Chen, “Optical coherence tomography for in vitro monitoring of wound healing after laser irradiation,” IEEE J. Select. Topics Quant. Elect. 9, 222–226 (2003).

    [18] R. Steiner, K. Kunzi-Rapp, K. Scharffetter- Kochanek, “Optical coherence tomography: Clinical applications in dermatology,” Med. Las. Appl. 18, 249–259 (2003).

    [19] T. J rgensen, A. Tycho, M. Mogensen, P. Bjerring, G. Jemec, “Machine-learning classification of nonmelanoma skin cancers from image features obtained by optical coherence tomography,” Skin Res. Tech. 14, 364–369 (2008).

    [20] M. Mogensen, T. Joergensen, B. Nurnbe, H. Morsy, J. Thomsen, L. Thrane, G. Jemec, “Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: Observer-blinded evaluation by dermatologists and pathologists,” Dermatologic Surgery, Published Online: 8 Apr 2009, doi: 10.1111/j.1524-4725.2009.01164.x.

    [21] V. Korde, G. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore,K. Saboda, L. Slayton, S. Salasche, J. Warneke, D. Alberts, J. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Las. Surg. Med. 39, 687– 695 (2007).

    [22] H. Moseley, Non-Ionizing Radiation: Microwaves, Ultraviolet and Laser Radiation, J. W. Arrowsmith Ltd., Bristol, UK (1988).

    [23] N. Gladkova, N. Shakhova, B. Shakhov, “Optic coherent tomography: A new high-resolution technology of visualization of tissue structures. Communication II. Optical images of benign and malignant entities,” Vestn. Rentgenol. Radiol. Mar–Apr (2), 44–54 (2004).

    [24] H. Hong, J. Sun, W. Cai, “Anatomical and molecular imaging of skin cancer,” Clin. Cosmetic Invest. Dermatology 1, 1–17 (2008).

    [25] H. Buchwald, A. Muller, J. Kampmeier, “Optical coherence tomography versus ultrasound biomicroscopy of conjunctival and eyelid lesions,” Klin. Monatsbl. Augenheilkd. 220, 822–829 (2003).

    [26] J. K. Barton, A. R. Tumlinson, U. Utzinger, “Combined endoscopic optical coherence tomography and laser induced fluorescence,” in Optical Coherence Tomography — Technology and Applications, W. Drexler, J. Fujimoto, Eds., Springer (2008).

    [27] L.Wang, H. Wu, Biomedical Optics: Principles and Imaging, Wiley-Interscience (2007).

    [28] R. Kuranov, V. Sapozhnikova, H. Shakhova, V. Gelikonov, E. Zagainova, S. Petrova. “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electronics 32, 993–998 (2002).

    EKATERINA BORISOVA, ELFRIDA CARSTEA, LUMINITA CRISTESCU, ELMIRA PAVLOVA, NIKOLAY HADJIOLOV, PETRANKA TROYANOVA, LATCHEZAR AVRAMOV. LIGHT-INDUCED FLUORESCENCE SPECTROSCOPY AND OPTICAL COHERENCE TOMOGRAPHY OF BASAL CELL CARCINOMA[J]. Journal of Innovative Optical Health Sciences, 2009, 2(3): 261
    Download Citation