• Infrared and Laser Engineering
  • Vol. 48, Issue 2, 203002 (2019)
Wang Qilong*, Li Yupei, Zhai Yusheng, Ji Jitao, Zou Haiyang, and Chen Guangdian
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla201948.0203002 Cite this Article
    Wang Qilong, Li Yupei, Zhai Yusheng, Ji Jitao, Zou Haiyang, Chen Guangdian. Progress of surface plasmon enhanced near-infrared photodetector based on metal/Si Schottky heterojunction[J]. Infrared and Laser Engineering, 2019, 48(2): 203002 Copy Citation Text show less
    References

    [1] Downs C, Vandervelde T E. Progress in infrared photodetectors since 2000[J]. Sensors, 2013, 13(4): 5054-5098.

    [2] Li C, Bando Y, Liao M, et al. Visible-blind deep-ultraviolet Schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire[J]. Applied Physics Letters, 2010, 97(16): 161102.

    [3] Wu P, Dai Y, Ye Y, et al. Fast-speed and high-gain photodetectors of individual single crystalline Zn3P2 nanowires[J]. Journal of Materials Chemistry, 2011, 21(8): 2563-2567.

    [4] Hansen M P, Malchow D S. Overview of SWIR detectors, cameras, and applications[C]//Thermosense Xxx. International Society for Optics and Photonics, 2008, 6939: 69390I.

    [5] Osborne B G, Fearn T, Hindle P H. Practical NIR Spectroscopy with Applications in Food and Beverage Analysis[M]. Berlin: Longman Scientific and Technical, 1993.

    [6] Gudiksen M S, Lauhon L J, Wang J, et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics[J]. Nature, 2002, 415(6872): 617.

    [7] Jie J, Zhang W, Peng K, et al. Surface-dominated transport properties of silicon nanowires[J]. Advanced Functional Materials, 2008, 18(20): 3251-3257.

    [8] Zheng Daqing, Chen Weimin, Chen Li, et al. A laser ranging method with high precision and large range in high speed based on phase measurement[J]. Journal of Optoelectronics·Laser, 2015, 26(2): 303-308. (in Chinese)

    [9] Campbell J C. Recent advances in telecommunications avalanche photodiodes[J]. Journal of Lightwave Technology, 2007, 25(1): 109-121.

    [10] Wu Guoan, Luo Linbao. Development and application of near infrared photodetectors[J]. Physics, 2018, 47(3): 137-142. (in Chinese)

    [11] Beling A, Campbell J C. InP-based high-speed photodetectors[J]. Journal of Lightwave Technology, 2009, 27(3): 343-355.

    [12] Kang Y, Mages P, Clawson A, et al. Fused InGaAs-Si avalanche photodiodes with low-noise performances [J]. IEEE Photonics Technology Letters, 2002, 14(11): 1593-1595.

    [13] Koester S J, Schaub J D, Dehlinger G, et al. Germanium-on-SOI infrared detectors for integrated photonic applications [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(6): 1489-1502.

    [14] Harame D, Koester S, Freeman G, et al. The revolution in SiGe: impact on device electronics [J]. Applied Surface Science, 2004, 224(1): 9-17.

    [15] Eng P C, Song S, Ping B. State-of-the-art photodetectors for optoelectronic integration at telecommunication wavelength[J]. Nanophotonics, 2015, 4(3): 277-302.

    [16] Jones R, Park H D, Fang A W, et al. Hybrid silicon integration[J]. Journal of Materials Science: Materials in Electronics, 2009, 20(1): 3-9.

    [17] Michel J, Liu J, Kimerling L C. High-performance Ge-on-Si photodetectors[J]. Nature Photonics, 2010, 4(8): 527.

    [18] Kang Y, Liu H D, Morse M, et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product[J]. Nature Photonics, 2009, 3(1): 59.

    [19] Vivien L, Osmond J, Fédéli J-M, et al. 42 GHz p.i.n Germanium photodetector integrated in a silicon-oninsulator waveguide[J]. Opt Express, 2008, 17: 6252-6257.

    [20] Wang J, Lee S. Ge-photodetectors for Si-based optoelectronic integration[J]. Sensors, 2011, 11(1): 696-718.

    [21] Alloatti L, Srinivasan S A, Orcutt J S, et al. Waveguide-coupled detector in zero-change complementary metal-oxide-semiconductor[J]. Applied Physics Letters, 2015, 107(4): 041104.

    [22] Meng H, Atabaki A, Orcutt J S, et al. Sub-bandgap polysilicon photodetector in zero-change CMOS process for telecommunication wavelength[J]. Opt Express, 2015, 23: 32643-32653.

    [23] Mailoa J P, Akey A J, Simmons C B, et al. Room-temperature sub-band gap optoelectronic response of hyperdoped silicon [J]. Nature Communications, 2014, 5: 3011.

    [24] Casalino M, Coppola G, Iodice M, et al. Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives[J]. Sensors, 2010, 10(12): 10571-10600.

    [25] Kimata M, Ozeki T, Tsubouchi N, et al. PtSi Schottky-barrier infared focal plane arrays[C]//Imaging System Technology for Remote Sensing. International Society for Optics and Photonics, 1998, 3505: 2-13.

    [26] Knight M W, Sobhani H, Nordlander P, et al. Photodetection with active optical antennas[J]. Science, 2011, 332(6030): 702-704.

    [27] Maier S A. Plasmonics: Fundamentals and Applications [M]. Berlin: Springer Science & Business Media, 2007.

    [28] Brongersma M L, Kik P G. Surface Plasmon Nanophotonics [M]. Berlin: Springer, 2007.

    [29] Wang Zhenlin. A review on research progress in surface plasmons[J]. Progress in Physics, 2009, 29(3): 287-324.(in Chinese)

    [30] Clavero C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices [J]. Nature Photonics, 2014, 8(2): 95-103.

    [31] Neumann O, Urban A S, Day J, et al. Solar vapor generation enabled by nanoparticles [J]. Acs Nano, 2013, 7(1): 42-49.

    [32] Hogan N J, Urban A S, Ayala-Orozco C, et al. Nanoparticles heat through light localization[J]. Nano Letters, 2014, 14(8): 4640-4645.

    [33] Sze S M, Ng K K. Physics of Semiconductor Devices[M]. New Jersey: John Wiley & Sons, 2006.

    [34] Zhang C, Wu K, Zhan Y, et al. Planar microcavity-integrated hot-electron photodetector [J]. Nanoscale, 2016, 8(19): 10323-10329.

    [35] Zhan Y, Wu K, Zhang C, et al. Infrared hot-carrier photodetection based on planar perfect absorber[J]. Optics Letters, 2015, 40(18): 4261-4264.

    [36] Sze S M, Moll J L, Sugano T. Range-energy relation of hot electrons in gold[J]. Solid-State Electronics, 1964, 7(7): 509-523.

    [37] White T P, Catchpole K R. Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits[J]. Applied Physics Letters, 2012, 101(7): 073905.

    [38] Donati S. Photodetectors[M]. New Jersey: Prentice Hall PTR, 1999.

    [39] Kan T, Ajiki Y, Matsumoto K, et al. Si process compatible near-infrared photodetector using Au/Si nano-pillar array[C]//Micro Electro Mechanical Systems (MEMS), 2016 IEEE 29th International Conference on. IEEE, 2016: 624-627.

    [40] Ajiki Y, Kan T, Yahiro M, et al. Near infrared photo-detector using self-assembled formation of organic crystalline nanopillar arrays[C]//Micro Electro Mechanical Systems (MEMS), 2014 IEEE 27th International Conference on. IEEE, 2014: 147-150.

    [41] Ajiki Y, Kan T, Yahiro M, et al. Silicon based near infrared photodetector using self-assembled organic crystalline nano-pillars[J]. Applied Physics Letters, 2016, 108(15): 151102.

    [42] Schider G, Krenn J R, Hohenau A, et al. Plasmon dispersion relation of Au and Ag nanowires[J]. Physical Review B, 2003, 68(15): 155427.

    [43] Ajiki Y, Kan T, Yahiro M, et al. Silicon based near infrared photodetector using self-assembled organic crystalline nano-pillars[J]. Applied Physics Letters, 2016, 108(15): 151102.

    [44] Yang Z, Liu M, Liang S, et al. Hybrid modes in plasmonic cavity array for enhanced hot-electron photodetection[J]. Optics Express, 2017, 25(17): 20268-20273.

    [45] Knight M W, Wang Y, Urban A S, et al. Embedding plasmonic nanostructure diodes enhances hot electron emission[J]. Nano Letters, 2013, 13(4): 1687-1692.

    [46] Li W, Valentine J. Metamaterial perfect absorber based hot electron photodetection[J]. Nano Letters, 2014, 14(6): 3510-3514.

    [47] Desiatov B, Goykhman I, Mazurski N, et al. Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime[J]. Optica, 2015, 2(4): 335-338.

    [48] Wen L, Chen Y, Liang L, et al. Hot electron harvesting via photoelectric ejection and photothermal heat relaxation in hotspots-enriched plasmonic/photonic disordered nanoco-mposites[J]. ACS Photonics, 2017, 5(2): 581-591.

    [49] Wen L, Chen Y, Liu W, et al. Enhanced photoelectric and photothermal responses on silicon platform by plasmonic absorber and omni-schottky junction[J]. Laser & Photonics Reviews, 2017, 11(4): 1700059.

    [50] Qi Z, Zhai Y, Wen L, et al. Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection[J]. Nanotechnology, 2017, 28(27): 275202.

    [51] Goykhman I, Desiatov B, Khurgin J, et al. Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band[J]. Optics Express, 2012, 20(27): 28594-28602.

    [52] Goykhman I, Desiatov B, Khurgin J, et al. Locally oxidized silicon surface-plasmon Schottky detector for telecom regime[J]. Nano Letters, 2011, 11(6): 2219-2224.

    [53] Muehlbrandt S, Melikyan A, Harter T, et al. Silicon-plasmonic internal-photoemission detector for 40 Gbit/s data reception[J]. Optica, 2016, 3(7): 741-747.

    [54] Sobhani A, Knight M W, Wang Y, et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device[J]. Nature Communications, 2013, 4: 1643.

    [55] Qin L, Zhang C, Li R, et al. Silicon-gold core-shell nanowire array for an optically and electrically characterized refractive index sensor based on plasmonic resonance and Schottky junction[J]. Optics Letters, 2017, 42(7): 1225-1228.

    [56] Phillips K S. Jirí Homola (Ed.): Surface plasmon resonance-based sensors[J]. Analytical and Bioanalytical Chemistry, 2008, 390(5): 1221-1222.

    [57] Tetz K A, Pang L, Fainman Y. High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance[J]. Optics Letters, 2006, 31(10): 1528-1530.

    [58] Porto J, Garcia-Vidal F, Pendry J. Transmission resonances on metallic gratings with very narrow slits [J]. Physical Review Letters, 1999, 83(14): 2845.

    [59] Gordon R, Brolo A, Mckinnon A, et al. Strong polarization in the optical transmission through elliptical nanohole arrays [J]. Physical Review Letters, 2004, 92(3): 037401.

    [60] Li W, Coppens Z J, Besteiro L V, et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials[J]. Nature Communications, 2015, 6: 8379.

    [61] Chalabi H, Schoen D & Brongersma M L. Hot-electron photodetection with a plasmonic nanostripe antenna[J]. Nano Lett, 2014, 14: 1374-1380.

    [62] Afshinmanesh F, White J S, Cai W, et al. Measurement of the polarization state of light using an integrated plasmonic polarimeter[J]. Nanophotonics, 2012, 1(2): 125-129.

    [63] Wu C Y, Pan Z Q, Wang Y Y, et al. Core-shell silicon nanowire array-Cu nanofilm Schottky junction for a sensitive self-powered near-infrared photodetector[J]. Journal of Materials Chemistry C, 2016, 4(46): 10804-10811.

    [64] Alavirad M, Olivieri A, Roy L, et al. High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors[J]. Optics Express, 2016, 24(20): 22544-22554.

    [65] Lin K T, Chen H L, Lai Y S, et al. Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths[J]. Nature Communications, 2014, 5: 3288.

    [66] Casalino M, Iodice M, Sirleto L, et al. Low dark current silicon-on-insulator waveguide metal-semiconductor-metal-photodetector based on internal photoemissions at 1 550 nm[J]. Journal of Applied Physics, 2013, 114(15): 153103.

    Wang Qilong, Li Yupei, Zhai Yusheng, Ji Jitao, Zou Haiyang, Chen Guangdian. Progress of surface plasmon enhanced near-infrared photodetector based on metal/Si Schottky heterojunction[J]. Infrared and Laser Engineering, 2019, 48(2): 203002
    Download Citation