• Chinese Journal of Quantum Electronics
  • Vol. 30, Issue 5, 524 (2013)
Ying-lan FANG1、2、*, Wen-qi NIU3, Cheng-yin SHEN1、2, Sheng LIU1、2, Chao-qun HUANG1、2, Hong-mei WANG1, Hai-he JIANG1、2, and Yan-nan CHU1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2013.04.003 Cite this Article
    FANG Ying-lan, NIU Wen-qi, SHEN Cheng-yin, LIU Sheng, HUANG Chao-qun, WANG Hong-mei, JIANG Hai-he, CHU Yan-nan. A preliminary theoretical simulation of Hadamard transform ion mobility spectrometry[J]. Chinese Journal of Quantum Electronics, 2013, 30(5): 524 Copy Citation Text show less
    References

    [1] Harris G A, Kwasnik M, Fernandez F M. Direct analysis in real time coupled to multiplexed drift tube ion mobility spectrometry for detecting toxic chemicals [J]. Anal. Chem., 2011, 83: 1908-1915.

    [2] Stlouis R H, Hill H H. Electron-capture ion mobility spectrometry for the selective detection of chlorinated and brominated species after capillary gas-chromatography [J]. Hrc-Journal of High Resolution Chromatography, 1990, 13(9): 628-632.

    [3] Tabrizchi M, Ilbeigi V. Detection of explosives by positive corona discharge ion mobility spectrometry [J]. J. Hazard. Mater., 2010, 17(1-3): 692-696.

    [4] Armenta S, et al. Pros and cons of benzodiazepines screening in human saliva by ion mobility spectrometry [J]. Anal. Bioanal. Chem., 2011, 401(6): 1935-1948.

    [5] Rearden P, Harrington P B. Rapid screening of precursor and degradation products of chemical warface agents in soil by solid-phase microextraction ion mobility spectrometry (SPME-IMS) [J]. Anal. Chim. Acta, 2005, 545(1): 13-20.

    [7] Kanu A B, Hill H H, Gribb M M, et al. A small subsurface ion mobility spectrometer sensor for detecting environmental soil-gas contaminants [J]. J. Environ. Monit., 2007, 9(1): 51-60.

    [8] Clowers B H, Siems W F, Hill H H, et al. Hadamard transform ion mobility spectrometry [J]. Anal. Chem., 2006, 78(1): 44-51.

    [9] Belov M E, Buschbach M A, Prior D C, et al. Multiplexed ion mobility spectrometry-orthogonal time-of-flight mass spectrometry [J]. Anal. Chem., 2007, 79: 2451-2462.

    [10] Brock A, Rodriguez N, Zare R N. Hadamard transform time of flight mass spectrometry [J]. Anal. Chem., 1998, 70(18): 3735-3741.

    [11] Brock A, Rodriguez N, et al. Characterization of a Hadamard transform time-of-flight mass spectrometer [J]. Rev. Sci. Instrum., 2000, 71(3): 1306-1318.

    [12] Kaneta T, Yamaguchi Y, Imasaka T. Hadamard transform capillary electrophoresis [J]. Anal. Chem., 1999, 71(23): 5444-5446.

    [13] Kaneta T. Hadamard transform capillary electrophoresis [J]. Anal. Chem., 2001, 73(19): 540A-547A.

    [14] Kaneta T, Kosai K, Imasaka T. Ultratrace analysis based on Hadamard transform capillary electrophoresis [J]. Anal. Chem., 2002, 74(10): 2257-2260.

    [15] Szumlas A W, Ray S J, Hieftje G M. Hadamard transform ion mobility spectrometry [J]. Anal. Chem., 2006, 78(13): 4474-4481.

    [16] Kwasnik M, Caramore J, Fernandez F M. Digitally-multiplexed nanoelectrospray ionization atmospheric pressure drift tube ion mobility spectrometry [J]. Anal. Chem., 2009, 81(4): 1587-1594.

    [17] Harwit M, Sloane N J A. Hadamard Transform Optics [M]. New York: Academic Press, 1979: 6-19.

    FANG Ying-lan, NIU Wen-qi, SHEN Cheng-yin, LIU Sheng, HUANG Chao-qun, WANG Hong-mei, JIANG Hai-he, CHU Yan-nan. A preliminary theoretical simulation of Hadamard transform ion mobility spectrometry[J]. Chinese Journal of Quantum Electronics, 2013, 30(5): 524
    Download Citation