• Infrared and Laser Engineering
  • Vol. 48, Issue 3, 311002 (2019)
Wang Mingjun1、*, Yu Jihua1, Liu Yanxiang1, Gao Xiangxiang2, and Zhang Huayong3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/irla201948.0311002 Cite this Article
    Wang Mingjun, Yu Jihua, Liu Yanxiang, Gao Xiangxiang, Zhang Huayong. Scattering properties of different rarefied random distributed ice crystal particles with different laser wavelengths[J]. Infrared and Laser Engineering, 2019, 48(3): 311002 Copy Citation Text show less
    References

    [1] Liou K N, Yang P. Light Scattering by Ice Crystals: Fundamentals and Applications[M]. Cambridge: Cambridge University Press, 2016.

    [2] Feigelson E M. Radiation in A Cloudy Atmosphere[M]. Netherland: Springer, 1984.

    [3] Yang P, Hong G, Dessler A E, et al. Contrails and induced cirrus: Optics and radiation[J]. Bulletin of the American Meteorological Society, 2010, 91(4): 473-478.

    [4] Baran A J. From the single-scattering properties of ice crystals to climate prediction: A way forward[J]. Atmospheric Research, 2012, 112: 45-69.

    [5] Liu Dong, Liu Qun, Bai Jian, et al. Data processing algorithms of the space-borne lidar CALIOP: A review[J]. Infrared and Laser Engineering, 2017, 46(12): 1202001. (in Chinese)

    [6] Liao Zijun, Yang Chunping. Scattering properties of ice clouds in the visible light spectral region[J]. Optics & Optoelectronic Technology, 2011, 9(6): 25-28. (in Chinese)

    [7] Zhao Yanjie, Wei Heli, Xu Qingshan, et al. Simulation of radiative properties of ice particles at 1.315 μm[J]. Infrared and Laser Engineering, 2009, 38(5): 782-786. (in Chinese)

    [8] Yang P, Bi L, Baum B A, et al. Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm[J]. Journals of the Atmospheric Sciences, 2013, 70(1): 330-347.

    [9] Baum B A, Yang P, Heymsfield A J, et al. Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 μm[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2014, 146: 123-139.

    [10] Bi L, Yang P. Improved ice particle optical property simulations in the ultraviolet to far-infrared regime[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 189: 228-237.

    [11] Wang Mingjun, Li Yingle, Wu Zhensen, et al. Laser scattering statistical characteristics of moving particles with rarefied random distribution[J]. Infrared and Laser Engineering, 2011, 40(7): 1249-1253. (in Chinese)

    [12] Ishimaru A. Wave Propagation and Scattering in Random Medium, Part I [M]. New York: Academic Press, 1978: 30-35.

    [13] Tian L, Heymsfield G M, Heymsfield A J, et al. A study of cirrus ice particle size distribution using TC4 observations[J]. Journal of the Atmospheric Sciences, 2010, 67(1): 195-216.

    [14] Emde C, Buras-Schnell R, Kylling A, et al. The libRadtran software package for radiative transfer calculations (version 2.0.1)[J]. Geoscientific Model Development, 2016, 9(5):1647-1672.

    [15] Yi B, Yan P, Liu Q, et al. Improvements on the ice cloud modeling capabilities of the community radiative transfer model[J]. Journal of Geophysical Research, 2016, 121(22):1-14.

    [16] Warren S G, Brandt R E. Optical constants of ice from the ultraviolet to the microwave: A revised compilation[J]. Journal of Geophysical Research Atmospheres, 2008, 113(D14): 762-770.

    Wang Mingjun, Yu Jihua, Liu Yanxiang, Gao Xiangxiang, Zhang Huayong. Scattering properties of different rarefied random distributed ice crystal particles with different laser wavelengths[J]. Infrared and Laser Engineering, 2019, 48(3): 311002
    Download Citation