• Infrared and Laser Engineering
  • Vol. 48, Issue 6, 603003 (2019)
Sun Mingjie* and Zhang Jiamin
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla201948.0603003 Cite this Article
    Sun Mingjie, Zhang Jiamin. Single-pixel imaging and its application in three-dimensional reconstruction[J]. Infrared and Laser Engineering, 2019, 48(6): 603003 Copy Citation Text show less
    References

    [1] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 1995, 52(5): R3429-R3432.

    [2] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 2008, 78(6): 061802.

    [3] Duarte M F, Davenport M A, Takbar D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91.

    [4] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 2009, 79(5): 053840.

    [5] Nipkow P. Optical Disk: German Patent, 30105[P]. 1884-1-6.

    [6] Baird J L. Apparatus for Transmitting Views or Images to a Distance: US, Patent 1699270[P]. 1929-01-15.

    [7] Mertz P, Gray F. Atheory of scanning and its relation to the characteristics of the transmitted signal in telephotography and television[J]. Bell System Technical Journal, 1934, 13(3): 464-515.

    [9] Hu B B, Nuss M C. Imaging with terahertz waves[J]. Optics Letters, 1995, 20(16): 1716-1718.

    [10] Thibault P, Dierolf M, Menzel A, et al. High-resolution scanning x-ray diffraction microscopy[J]. Science, 2008, 321(5887): 379-382.

    [11] Scarcelli G, Berardi V, Shih Y H. Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations [J]. Physical Review Letters, 2006, 96(6): 063602.

    [12] Shih Y H. Quantum imaging[J]. IEEE Journal on Selected Topics in Quantum Electronics, 2007, 13(4): 1016-1030.

    [13] Bennink R S, Bentley S J, Boyd R W. "Two-photon" coincidence imaging with a classical source[J]. Physical Review Letters, 2002, 89(11): 113601.

    [14] Gatti A, Brambilla E, Bache M, et al. Correlated imaging:quantum and classical[J]. Physical Review A, 2004, 70(1): 13801-13802.

    [15] Valencia A, Scarcelli G, D′Angelo M, et al. Two-photon imaging with thermal light[J]. Physical Review Letters, 2005, 94(6): 063601.

    [16] Zhai Y H, Chen X H, Zhang D, et al. Two-photon interference with true thermal light[J]. Physical Review A, 2005, 72(4): 043805.

    [17] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Applied Physics Letters, 2009, 95(13): 131110.

    [18] Erkmen B I, Shapiro J H. Unified theory of ghost imaging with Gaussian-state light[J]. Physical Review A, 2012, 77(4): 140-140.

    [19] Shapiro J H, Boyd R W. The physics of ghost imaging[J]. Quantum Information Processing, 2012, 11(4): 949-993.

    [20] Altmann Y, McLaughlin S, Padgett M J, et al. Quantum-inspired computational imaging[J]. Science, 2018, 361: 6403.

    [21] Candès E J. Compressive sampling[C]//Proceedings of the 2006 International Congress of Mathematicians, 2006:1433-1452.

    [22] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

    [23] Candès E, Romberg J. Sparsity and incoherence in compressive sampling[J]. Inverse Problems, 2007, 23(3): 969-985.

    [24] Baraniuk R G. Compressive sensing [lecture notes][J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-120.

    [25] Studer V, Jérome B, Chahid M, et al. Compressive fluorescence microscopy for biological and hyperspectral imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(26): E1679-E1687.

    [26] Welsh S S, Edgar M P, Edgar S S, et al. Fast full-color computational imaging with single-pixel detectors[J]. Optics Express, 2013, 21(20): 23068-23074.

    [27] Radwell N, Mitchell K J, Gibson G M, et al. Single-pixel infrared and visible microscope[J]. Optica, 2014, 1(5): 285-289.

    [28] Edgar M P, Gibson G M, Bowman R W, et al. Simultaneous real-time visible and infrared video with single-pixel detectors[J]. Scientific Reports, 2015, 5: 10669.

    [29] Bian L, Suo J, Situ G, et al. Multispectral imaging using a single bucket detector[J]. Scientific Reports, 2016, 6: 24752.

    [30] Watts C M, Shrekenhamer D, Montoya J, et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 2014, 8(8): 605-609.

    [31] Stantchev R I, Sun B, Hornett S M, et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector[J]. Science Advances, 2016, 2(6): e1600190.

    [32] Cheng J, Han S. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. Physical Review Letters, 2004, 92(9): 93901-93903.

    [33] Greenberg J, Krishnamurthy K, David B. Compressive single-pixel snapshot X-ray diffraction imaging[J]. Optics Letters, 2014, 39(1): 111-114.

    [34] Zhang A X, He Y H, Wu L A, et al. Tabletop X-ray ghost imaging with ultra-low radiation[J]. Optica, 2018, 5(4): 374-377.

    [35] Ryczkowski P, Barbier M, Friberg A T, et al. Ghost imaging in the time domain[J]. Nature Photonics, 2016, 10(3): 167-170.

    [36] Faccio D. Optical communications: Temporal ghost imaging[J]. Nature Photonics, 2016, 10(3): 150-152.

    [37] Devaux F, Moreau P A, Denis S, et al. Computational temporal ghost imaging[J]. Optica, 2016, 3(7): 698-701.

    [38] Howland G A, Dixon P B, Howell J C. Photon-counting compressive sensing laser radar for 3D imaging[J]. Applied Optics, 2011, 50(31): 5917-5920.

    [39] Zhao C, Gong W, Chen M, et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 2012, 101(14): 141123.

    [40] Howland G A, Lum D J, Ware M R, et al. Photon counting compressive depth mapping[J]. Optics Express, 2013, 21(20): 23822-23837.

    [41] Zhao C, Gong W, Chen M, et al. Ghost imaging lidar via sparsity constraints in real atmosphere[J]. Optics and Photonics Journal, 2013, 3(2): 83-85.

    [42] Sun B, Edgar M P, Bowman R, et al. 3D computational imaging with single-pixel detectors[J]. Science, 2013, 340(6134): 844-847.

    [43] Yu H, Li E, Gong W, et al. Structured image reconstruction for three-dimensional ghost imaging lidar[J]. Optics Express, 2015, 23(11): 14541-14551.

    [44] Yu W K, Yao X R, Liu X F, et al. Three-dimensional single-pixel compressive reflectivity imaging based on complementary modulation[J]. Applied Optics, 2015, 54(3): 363-367.

    [45] Sun M J, Edgar M P, Gibson G M, et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature Communications, 2016, 7: 12010.

    [46] Zhang Z, Zhong J. Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels[J]. Optics Letters, 2016, 41(11): 2497-2500.

    [47] Zhang Z B, Liu S J, Peng J Z, et al. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements[J]. Optica, 2018, 5(3): 315-319.

    [48] Salvador-Balaguer E, Latorre-Carmona P, Chabert C, et al. Low-cost single-pixel 3D imaging by using an LED array[J]. Optics Express, 2018, 26(12): 15623-15631.

    [49] Massa J S, Wallace A M, Buller G S, et al. Laser depth measurement based on time-correlated single-photon counting[J]. Optics Letters, 1997, 22(8): 543-545.

    [50] McCarthy A, Collins R J, Krichel N J, et al. Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting[J]. Applied Optics, 2009, 48(32): 6241-6251.

    [51] McCarthy A, Krichel N J, Gemmell N R, et al. Kilometer-range, high resolution depth imaging via 1 560 nm wavelength single-photon detection[J]. Optics Express, 2013, 21(7): 8904-8915.

    [52] Lochocki B, Gambín A, Manzanera S, et al. Single pixel camera ophthalmoscope[J]. Optica, 2016, 3(10): 1056-1059.

    [53] Sun M J, Edgar M P, Phillips D B, et al. Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning[J]. Optics Express, 2016, 24(10): 10476-10485.

    [54] Wang L, Zhao S. Fast reconstructed and high-quality ghost imaging with fast Walsh-Hadamard transform[J]. Photonics Research, 2016, 4(6): 240-244.

    [55] Zhang Z, Ma X, Zhong J. Single-pixel imaging by means of Fourier spectrum acquisition[J]. Nature Communications, 2015, 6: 6225.

    [56] Czajkowski K M, Pastuszczak A, Kotynski R. Real-time single-pixel video imaging with Fourier domain regularization[J]. Optics Express, 2018, 26(16): 20009-20022.

    [57] Aβmann M, Bayer M. Compressive adaptive computational ghost imaging[J]. Scientific Reports, 2013, 3: 1545.

    [58] Yu W K, Li M F, Yao X R, et al. Adaptive compressive ghost imaging based on wavelet trees and sparse representation[J]. Optics Express, 2014, 22(6): 7133-7144.

    [59] Rousset F, Ducros N, Farina A, et al. Adaptive basis scan by wavelet prediction for single-pixel imaging[J]. IEEE Transactions on Computational Imaging, 2017, 3(1): 36-46.

    [60] Czajkowski K M, Pastuszczak A, Kotyński R. Single-pixel imaging with Morlet wavelet correlated random patterns[J]. Scientific Reports, 2018, 8(1): 466.

    [61] Sun M J, Meng L T, Edgar M P, et al. A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging[J]. Scientific Reports, 2017, 7(1): 3464.

    [62] Aravind R, Cash G L, Worth J P. On implementing the JPEG still-picture compression algorithm[C]//Advances in Intelligent Robotics Systems Conference, 1989, 1199: 799-808.

    [63] Cheng X, Liu Q, Luo K H, et al. Lensless ghost imaging with true thermal light[J]. Optics Letters, 2009, 34(5): 695-697.

    [64] Ferri F, Magatti D, Lugiato L, et al. Differential ghost imaging[J]. Physical Review Letters, 2010, 104(25): 253603.

    [65] Agafonov I N, Luo K H, Wu L A, et al. High-visibility, high-order lensless ghost imaging with thermal light[J]. Optics Letters, 2010, 35(8): 1166-1168.

    [66] Sun B, Welsh S, Edgar M P, et al. Normalized ghost imaging[J]. Optics Express, 2012, 20(15): 16892-16901.

    [67] Sun M J, Li M F, Wu L A. Nonlocal imaging of a reflective object using positive and negative correlations[J]. Applied Optics, 2015, 54(25): 7494-7499.

    [68] Song S C, Sun M J, Wu L A. Improving the signal-to-noise ratio of thermal ghost imaging based on positive-negative intensity correlation[J]. Optics Communications, 2016, 366: 8-12.

    [69] Sun M J, He X, Li M F, et al. Thermal light subwavelength diffraction using positive and negative correlations[J]. Chinese Optics Letters, 2016, 14(4):15-19.

    [70] Candes E J, Tao T. Near-optimal signal recovery from random projections: Universal encoding strategies [J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.

    [71] Sankaranarayanan A C, Studer C, Baraniuk R G. CS-MUVI: Video compressive sensing for spatial-multiplexing cameras[C]//IEEE International Conference on Computational Photography, 2012: 6215212.

    [72] Gong W, Zhao C, Yu H, et al. Three-dimensional ghost imaging lidar via sparsity constraint[J]. Scientific Reports, 2016, 6: 26133.

    [73] Xu Z H, Chen W, Penuelas J, et al. 1 000 fps computational ghost imaging using LED-based structured illumination[J]. Optics Express, 2018, 26(3): 2427-2434.

    [74] Komatsu K, Ozeki Y, Nakano Y, et al. Ghost imaging using integrated optical phased array[C]//Optical Fiber Communication Conference. IEEE, 2017: 4.

    [75] Li L J, Chen W, Zhao X Y, et al. Fast Optical phased array calibration technique for random phase modulation LiDAR[J]. IEEE Photonics Journal, 2018, 11(1): 1-10.

    [76] Sun M J, Zhao X Y, Li L J. Imaging using hyperuniform sampling with a single-pixel camera[J]. Optics Letters, 2018, 43(16): 4049-4052.

    [77] Phillips D B, Sun M J, Taylor J M, et al. Adaptive foveated single-pixel imaging with dynamic super-sampling[J]. Science Advances, 2017, 3(4): 1601782.

    [78] Herman M, Tidman J, Hewitt D, et al. A higher-speed compressive sensing camera through multi-diode design[C]//SPIE Defense, Security, & Sensing, 2013, 8717: 871706.

    [79] Sun M J, Chen W, Liu T F, et al. Image retrieval in spatial and temporal domains with a quadrant detector[J]. IEEE Photonics Journal, 2017, 9(5): 1-6.

    [80] Dickson R M, Norris D J, Tzeng Y L, et al. Three-dimensional imaging of single molecules solvated in pores of poly(acrylamide) gels[J]. Science, 1996, 274(5289): 966-968.

    [81] Udupa J K, Herman G T. 3D Imaging in Medicine[M]. Boca Raton: CRC Press, 1991.

    [82] Bosch T, Lescure M, Myllyla R, et al. Laser ranging: A critical review of usual techniques for distance measurement[J]. Optical Engineering, 2001, 40(1): 10-19.

    [83] Schwarz B. Lidar: Mapping the world in 3D[J]. Nature Photonics, 2010, 4(7): 429-430.

    [84] Zhang S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques[J]. Optics and Lasers in Engineering, 2010, 48(2): 149-158.

    [85] Cho M, Javidi B. Three-dimensional photon counting double-random-phase encryption[J]. Optics Letters, 2013, 38(17): 3198-3201.

    [86] Velten A, Willwacher T, Gupta O, et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging[J]. Nature Communications, 2012, 3(3): 745.

    [87] Keppel E. Approximating complex surfaces by triangulation of contour lines[J]. IBM Journal of Research and Development, 1975, 19(1): 2-11.

    [88] Boyde A. Stereoscopic images in confocal (tandem scanning) microscopy[J]. Science, 1985, 230(4731): 1270-1272.

    [89] Woodham R J. Photometric method for determining surface orientation from multiple images[J]. Optical Engineering, 1980, 19(1): 139-144.

    [90] Horn B K P. Robot Vision[M]. US: MIT Press, 1986.

    [91] Horn B K P, Brooks M J. Shape from Shading[M]. US: MIT Press, 1989.

    [92] Zhang Y, Edgar M P, Sun B, et al. 3D single-pixel video[J]. Journal of Optics, 2016, 18(3): 035203.

    [93] Geng J. Structured-light 3D surface imaging: A tutorial[J]. Advances in Optics and Photonics, 2011, 3(2): 128-160.

    [94] Jiang C F, Bell T, Zhang S. High dynamic range real-time 3D shape measurement[J]. Optics Express, 2016, 24(7): 7337-7346.

    [95] Goda K, Tsia K K, Jalali B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena[J]. Nature, 2009, 458(7242): 1145-1149.

    [96] Diebold E D, Buckley B W, Gossett D R, et al. Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy[J]. Nature Photonics, 2013, 7(10): 806-810.

    [97] Tajahuerce E, Durán V, Clemente P, et al. Image transmission through dynamic scattering media by single-pixel photodetection[J]. Optics Express, 2014, 22(14): 16945-16955.

    [98] Guo Q, Chen H W, Weng Z L, et al. Compressive sensing based high-speed time-stretch optical microscopy for two-dimensional image acquisition[J]. Optics Express, 2015, 23(23): 29639-29646.

    Sun Mingjie, Zhang Jiamin. Single-pixel imaging and its application in three-dimensional reconstruction[J]. Infrared and Laser Engineering, 2019, 48(6): 603003
    Download Citation