• Journal of Inorganic Materials
  • Vol. 34, Issue 6, 660 (2019)
Shu-Guang ZHOU1、2, Yi-Jun GUO2、*, and Xiao LIU2
Author Affiliations
  • 1State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China
  • 2Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China
  • show less
    DOI: 10.15541/jim20180395 Cite this Article
    Shu-Guang ZHOU, Yi-Jun GUO, Xiao LIU. Simulation of ZrB2 Oxidation Behavior at Constant Temperature Ambient[J]. Journal of Inorganic Materials, 2019, 34(6): 660 Copy Citation Text show less
    References

    [1] V CLOUGHERTY E, D KALISH, T PETER E. esearch and development of refractory oxidation resistant diborides. RAFML-TR-68-190(1968).

    [2] GUO-JUN ZHANG, HAI-TAO LIU, JI ZOU et al. Chemical reactions in the life cycle of ZrB2 ceramics. Chinese Science Bulletin, 60, 276-286(2015).

    [3] GANG LI, WEN-BO HAN, JIU-XING JIANG. Mechanicalproperties and thermal shock resistance of ZrB2-SiC-AN ultrahigh temperature ceramics.. Journal of Synthetic Crystals, 38, 36-39(2009).

    [4] JIAN-RONG SONG, JUN-GUO LI, QIANG SHEN et al. Thermal shock and oxidation resistances of ZrB2-ZrO2 ceramics. Journal of the Chinese Ceramic Society, 36, 663-667(2008).

    [5] JIE-GUANG SONG, DA-MING DU, MING-HAN XU et al. Oxidation behavior of ZrB2-matrix composite materials at high-temperature conditions. Powder Metallurgy Technology, 33, 336-340, 364(2015).

    [6] HAI-JUN ZHOU, XIANG-YU ZHANG, LE GAO et al. Ablation properties of ZrB2-SiC ultra-high temperature ceramic coatings. Journal of Inorganic Materials, 28, 256-260(2013).

    [7] HAI-LEI ZHAO, JIAN WANG, WEN-CHAO LI. Study on oxidation kinetics of ZrB2-corundum-mullite composite. Naihuo Cailiao, 32, 322-325(1998).

    [8] A PARTHASARATHY T, A RAPP R, M OPEKA et al. A model for the oxidation of ZrB2, HfB2 and TiB2. Acta Materialia, 55, 5999-6010(2007).

    [9] A PARTHASARATHY T, A RAPP R, M OPEKA et al. A model for transitions in oxidation regimes of ZrB2. Materials Science Forum, 595-598, 823-832(2008).

    [10] A PARTHASARATHY T, A RAPP R, M OPEKA et al. Effects of phase change and oxygen permeability in oxide scales on oxidation kinetics of ZrB2 and HfB2. Journal of the American Ceramic Society, 92, 1079-1086(2009).

    [11] B BERKOWITZ-MATTUCK J. High-temperature oxidation III. zirconium and hafnium diborides. Journal of the Electrochemical Society, 113, 908-914(1966).

    [12] PING HU, GUO-LIN WANG, ZHI WANG. Oxidation mechanism and resistance of ZrB2-SiC composites. Corrosion Science, 51, 2747-2732(2009).

    [13] F ANDREEVA A. Zirconium diboride low resistance layers. MAM’97-Materials for Advanced Metallization. Poster Session I(1997).

    [14] J PAGE R, A SHORT R, R HALBACH C. Evaluation of zirconia, thoria and zirconium diboride for advanced resistojet use. NASA CR-112075(1972).

    [15] A MCCLAINE L. Thermodynamic and kinetic studies for a refractory materials program, Part III. ASD-TDR-62-204Part III(1964).

    [16] L LUTHRA K. Oxidation of carbon/carbon composites—a theoretical analysis. Carbon, 26, 217-224(1988).

    [17] M W CHASE JR. NIST-JANAF Thermochemical Tables 4 th Ed. Physical and Chemical Reference Data Monograph No.9, 1756-1780(1998).

    [18] C TRIPP W, C GRAHAM H. Thermogravimetric study of the oxidation of ZrB2 in the temperature range of 800 to 1500 ℃. Journal of the Electrochemical Society, 118, 1195-1199(1971).

    [19] H PERRY R, W GREEN D, O MALONEY J. Perry’s Chemical Engineers’ Handbook 7 th Ed. New York:McGraw-Hill, 570(1997).

    [20] I BARIN. Thermochemical data of pure substances. New York: VCH Verlags-gesellschaft, 122-124(1995).

    [21] S JACOBSON N, M CURRY D. Oxidation microstructure studies of reinforced carbon/carbon. Carbon, 44, 1142-1150(2006).

    [22] R WELTY J, L RORRER G, G FOSTER D. Fundamentals of momentum, heat and mass transfer 6th Ed. New York: WILEY, P448(2013).

    [23] B BIRD R, E STEWART W, N LIGHTFOOT E. Transport phenomena. New York: John Wiley, 526, 866(2002).

    [24] J J. SZEKELY, J EVANS, H Y SOHN W. Gas Solid Reactions, 25(1976).

    [25] G DUFFA. Ablative thermal protection system modeling, 109(2012).

    [26] JIAN-FENG LI, XIA-MING ZHOU, CHUAN-XIAN DING. Statistical analysis of porosity variations in plasma sprayed Cr3C2- NiCr coatings. Journal of Aeronautical Materials, 20, 33-38(2000).

    [27] HONG-SONG ZHANG, FU-CHI WANG, ZHUANG MA et al. Quantitative analysis of pores in plasma-sprayed ZrO2 coatings. Journal of Materials Engineering, 407-425(2006).

    [28] A PRATTEN N. The precise measurement of the density in small samples. Materials Science, 16, 1737-1747(1981).

    [29] YANG ZHAO, LI LIN, ZHI-YUAN MA et al. Establishing TBC random pore model based on random media theory. China Surface Engineering, 23, 78-81(2010).

    [30] C FOX A, W CLYNE T. Oxygen transport by gas permeation through the zirconia layer in plasma sprayed thermal barrier coating. Surface and Coatings Technology, 184, 311-321(2004).

    Shu-Guang ZHOU, Yi-Jun GUO, Xiao LIU. Simulation of ZrB2 Oxidation Behavior at Constant Temperature Ambient[J]. Journal of Inorganic Materials, 2019, 34(6): 660
    Download Citation