• Acta Optica Sinica
  • Vol. 36, Issue 3, 319001 (2016)
Zhu Lei1、2、*, Wang Lulu1、2, Dong Xinyong1、3, Shen Ping2, and Su Haibin3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/aos201636.0319001 Cite this Article Set citation alerts
    Zhu Lei, Wang Lulu, Dong Xinyong, Shen Ping, Su Haibin. Mid-Infrared Supercontinuum Generation with Highly Germanium-Doped Silica Fiber[J]. Acta Optica Sinica, 2016, 36(3): 319001 Copy Citation Text show less
    References

    [1] Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm[J]. Opt Lett, 2000, 25(1): 25-27.

    [2] Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J]. Reviews of Modern Physics, 2006, 78(4): 1135- 1184.

    [3] Jia Dongfang, Ge Chunfeng, Hu Zhiyong, et al.. Studies on supercontinuum generation in dispersion shifted fiber by using mode-locked fiber laser[J]. Acta Optica Sinica, 2005, 25(6): 746-750.

    [4] Li Min, Huo Li, Wang Dong, et al.. Supercontinuum generation based on dual-wavelength coherent ultrashort pulses[J]. Acta Optica Sinica, 2015, 35(4): 0406001.

    [5] Sanghera J S, Shaw L B, Aggarwal I D. Chalcogenide glass-fiber-based mid-IR sources and applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 114-119.

    [6] Qin G, Yan X, Kito C, et al.. Supercontinuum generation spanning over three octaves from UV to 3.85 μm in a fluoride fiber[J]. Opt Lett, 2009, 34(13): 2015-2017.

    [7] Qin G, Yan X, Liao M, et al.. Wideband supercontinuum generation in tapered tellurite microstructured fibers[J]. Laser Physics, 2011, 21(6): 1115-1121.

    [8] Mouawad O, Amrani F, Kibler B, et al.. Impact of optical and structural aging in As2S3 microstructured optical fibers on mid-infrared supercontinuum generation[J]. Opt Express, 2014, 22(20): 23912-23919.

    [9] Gao W, El Amraoui M, Liao M, et al.. Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber[J]. Opt Express, 2013, 21(8): 9573-9583.

    [10] Dianov E M, Mashinsky V M. Germania-based core optical fibers[J]. Journal of Lightwave Technology, 2005, 23(11): 3500-3508.

    [11] Anashkina E A, Andrianov A V, Koptev M Y, et al.. Generating tunable optical pulses over the ultrabroad range of 1.6-2.5 μm in GeO 2-doped silica fibers with an Er: fiber laser source[J]. Opt Express, 2012, 20(24): 27102-27107.

    [12] Anashkina E A, Andrianov A V, Koptev M Y, et al.. Towards mid-infrared supercontinuum generation with germano-silicate fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 7600608.

    [13] Zhang M, Kelleher E J R, Runcorn T H, et al.. Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked subpicosecond Tm-doped MOPFA[J]. Opt Express, 2013, 21(20): 23261-23271.

    [14] Kamynin V A, Kurkov A S, Mashinsky V M. Supercontinuum generation up to 2.7 mm in the germanate-glass-core and silica-glasscladding fiber[J]. Laser Physics Letters, 2012, 9(3): 219-222.

    [15] Plotnichenko V G, Sokolov V O, Mashinskii V M, et al.. Hydroxyl groups in GeO2 glass[J]. Inorganic Materials, 2002, 38(7): 738-745.

    CLP Journals

    [1] Gao Pengfei, Li Xiaohui, Luo Wenfeng, Zou Defeng, Chai Tong, Pang Xingxing. Numerical Simulation of Effect of Pump Wavelength on Mid-Infrared Supercontinuum[J]. Chinese Journal of Lasers, 2017, 44(7): 703023

    Zhu Lei, Wang Lulu, Dong Xinyong, Shen Ping, Su Haibin. Mid-Infrared Supercontinuum Generation with Highly Germanium-Doped Silica Fiber[J]. Acta Optica Sinica, 2016, 36(3): 319001
    Download Citation