• Laser & Optoelectronics Progress
  • Vol. 57, Issue 5, 050008 (2020)
Yuting Gong1、2, Lanqin Liu1、*, Yuanchao Geng1, and Xibo Sun1
Author Affiliations
  • 1Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
  • 2Graduate School of China Academy of Engineering Physics, Beijing 100088, China
  • show less
    DOI: 10.3788/LOP57.050008 Cite this Article Set citation alerts
    Yuting Gong, Lanqin Liu, Yuanchao Geng, Xibo Sun. Research Progress on Ultrashort Vortex Pulse Generation Methods[J]. Laser & Optoelectronics Progress, 2020, 57(5): 050008 Copy Citation Text show less
    Diagram of SPP with 16 steps[33]
    Fig. 1. Diagram of SPP with 16 steps[33]
    36-level achromatic spiral phase plate composed of two elements with different refractive indexes[35]
    Fig. 2. 36-level achromatic spiral phase plate composed of two elements with different refractive indexes[35]
    Schematic of 2f-2f dispersion compensation setup[37]
    Fig. 3. Schematic of 2f-2f dispersion compensation setup[37]
    Schematic of ultrabroadband vortex beam generation system[41]
    Fig. 4. Schematic of ultrabroadband vortex beam generation system[41]
    Diagram of axially-symmetric half-wave plate[43]
    Fig. 5. Diagram of axially-symmetric half-wave plate[43]
    Setup diagram for generation of double-charge femtosecond vortex pulses[44]
    Fig. 6. Setup diagram for generation of double-charge femtosecond vortex pulses[44]
    Setup diagram for generation and characterization of few-cycle ultrashort vortex pulses[45]
    Fig. 7. Setup diagram for generation and characterization of few-cycle ultrashort vortex pulses[45]
    Schematic of ultrashort vortex pulse generation by spiral multi-pinhole plate[46]
    Fig. 8. Schematic of ultrashort vortex pulse generation by spiral multi-pinhole plate[46]
    Diagram of Sagnac interferometer used as single-charge vortex generator[47]
    Fig. 9. Diagram of Sagnac interferometer used as single-charge vortex generator[47]
    ComponentPolarizerAQWP1ASPAQWP2Analyzer
    Jones matrix1000121ii1cos2φ12sin2φ12sin2φsin2φ121-i-i10001
    Vector10121i12exp(iφ)cosφsinφ121-iexp(2)-i2exp(2iφ)01
    Table 1. Jones matrix of each component and light field vectors after passing through device[41]
    Generation methodAdvantageDisadvantage
    Spiral phase plateHigh damage threshold,low dissipation, greater flexibilityTopological-charge dispersion,group delay
    Computer-generatedhologramGenerate anytopological chargeLow conversion efficiency,complicated compensation procedure
    Axially symmetric polarizer/axiallysymmetric half-wave plateHigh conversation efficiency,applicable to ultrabroadband pulsesLow damage threshold
    Uniaxial crystalApplicable to ultrabroadband pulses,high damage threshold, highconversation efficiencyOnly generate single-anddouble-charge vortex
    Spiral gratingCompact structure,generate high contrast pulseComplicate components
    Spiral multi-pinhole plateHigh damage threshold,easily fabricatedTopological-charge dispersion,low conversion efficiency
    Sagnac interferometerCommon-path configuration,applicable to ultrabroadband pulses,high damage thresholdOnly generate single-charge vortex
    Table 2. Comparison of different methods for ultrashort vortex beam generation
    Yuting Gong, Lanqin Liu, Yuanchao Geng, Xibo Sun. Research Progress on Ultrashort Vortex Pulse Generation Methods[J]. Laser & Optoelectronics Progress, 2020, 57(5): 050008
    Download Citation