• Journal of Infrared and Millimeter Waves
  • Vol. 41, Issue 1, 2021113 (2022)
Nan MA1, Cheng DOU2, Man WANG1, Liang-Qing ZHU2, Xi-Ren CHEN2, Feng LIU1、*, and Jun SHAO2、**
Author Affiliations
  • 1Department of Physics,Shanghai Normal University,Shanghai 200234,China
  • 2State Key Laboratory of Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2022.01.028 Cite this Article
    Nan MA, Cheng DOU, Man WANG, Liang-Qing ZHU, Xi-Ren CHEN, Feng LIU, Jun SHAO. Infrared emission efficiency of δ - doped GaSbBi single quantum well by photoluminescence spectroscopy[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2021113 Copy Citation Text show less
    Variable temperature PL spectrum of GaSbBi SQW with a sheet density of 1.14×1012 cm-2
    Fig. 1. Variable temperature PL spectrum of GaSbBi SQW with a sheet density of 1.14×1012 cm-2
    100 mW PL spectra of GaSbBi SQW samples and Substrates with different sheet densities
    Fig. 2. 100 mW PL spectra of GaSbBi SQW samples and Substrates with different sheet densities
    Power-dependent PL spectra of GaSbBi SQW with a sheet density of 1.14×1012 cm-2 and the reference. Inset:Enlargement for the region I of the doped sample
    Fig. 3. Power-dependent PL spectra of GaSbBi SQW with a sheet density of 1.14×1012 cm-2 and the reference. Inset:Enlargement for the region I of the doped sample
    Excitation power-dependent PL integral intensity in region I for GaSbBi SQW samples with different sheet densities and the references. Sheet density:(a)1.14×1012 cm-2,(b)2.28×1012 cm-2,(c)3.42×1012 cm-2,and(d)4.56×1012 cm-2
    Fig. 4. Excitation power-dependent PL integral intensity in region I for GaSbBi SQW samples with different sheet densities and the references. Sheet density:(a)1.14×1012 cm-2,(b)2.28×1012 cm-2,(c)3.42×1012 cm-2,and(d)4.56×1012 cm-2
    Relative reduction of emission efficiency in region Ⅰ(a)and Ⅱ(b)
    Fig. 5. Relative reduction of emission efficiency in region Ⅰ(a)and Ⅱ(b)
    The schematic diagram of electronic transition and recombination process
    Fig. 6. The schematic diagram of electronic transition and recombination process
    Excitation power-dependent PL integral intensity in region II,sheet density:(a)1.14×1012 cm-2,(b)2.28×1012 cm-2,(c)3.42×1012 cm-2,and(d)4.56×1012 cm-2
    Fig. 7. Excitation power-dependent PL integral intensity in region II,sheet density:(a)1.14×1012 cm-2,(b)2.28×1012 cm-2(c)3.42×1012 cm-2,and(d)4.56×1012 cm-2
    PL peak energy vs excitation power for GaSbBi SQWs with different sheet density and the references. Sheet density:(a)1.14×1012 cm-2,(b)2.28×1012 cm-2,(c)3.42×1012 cm-2,and(d)4.56×1012 cm-2
    Fig. 8. PL peak energy vs excitation power for GaSbBi SQWs with different sheet density and the references. Sheet density:(a)1.14×1012 cm-2,(b)2.28×1012 cm-2(c)3.42×1012 cm-2,and(d)4.56×1012 cm-2
    组别1234
    Te掺杂面密度(×1012 cm-21.142.283.424.56
    Table 1. Sheet densities of δ-doped GaSbBi SQW
    组别1234
    样品GaSbBi QW TeGaSbBi QWGaSbBi QW TeGaSbBi QWGaSbBi QW TeGaSbBi QWGaSbBi QW TeGaSbBi QW
    (1.14×1012 cm-2(2.28×1012 cm-2(3.42×1012 cm-2(4.56×1012 cm-2(4.56×1012 cm-2
    宽度(meV)7663835787668260
    Table 2. FWHMs of zone I for the GaSbBi SQWs with different areal densities and the references as well
    组别1234
    样品GaSbBi QW TeGaSbBi QWGaSbBi QW TeGaSbBi QWGaSbBi QW TeGaSbBi QWGaSbBi QW TeGaSbBi QW
    (1.14×1012 cm-2(2.28×1012 cm-2(3.42×1012 cm-2(4.56×1012 cm-2
    斜率(mW-10.020.060.010.040.020.030.010.04
    Table 3. Fitting slopes for PL integral intensity in region I
    组别1234
    样品GaSbBi QW TeGaSbBi QWGaSbBi QW TeGaSbBi QWGaSbBi QW TeGaSbBi QWGaSbBi QW TeGaSbBi QW
    (1.14×1012 cm-2(2.28×1012 cm-2(3.42×1012 cm-2(4.56×1012 cm-2
    斜率(mW-10.340.650.230.610.250.420.190.55
    Table 4. Fitting slopes for PL integral intensity in region II
    Nan MA, Cheng DOU, Man WANG, Liang-Qing ZHU, Xi-Ren CHEN, Feng LIU, Jun SHAO. Infrared emission efficiency of δ - doped GaSbBi single quantum well by photoluminescence spectroscopy[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2021113
    Download Citation