• Photonics Research
  • Vol. 6, Issue 4, 339 (2018)
Qunhuo Liu1, Ying Tian1、*, Wenhua Tang1, Feifei Huang1, Xufeng Jing2, Junjie Zhang1, and Shiqing Xu1、3
Author Affiliations
  • 1College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China
  • 2Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China
  • 3e-mail: sxucjlu@163.com
  • show less
    DOI: 10.1364/PRJ.6.000339 Cite this Article Set citation alerts
    Qunhuo Liu, Ying Tian, Wenhua Tang, Feifei Huang, Xufeng Jing, Junjie Zhang, Shiqing Xu. Broadening and enhancing 2.7  μm emission spectra in Er/Ho co-doped oxyfluoride germanosilicate glass ceramics by imparting multiple local structures to rare earth ions[J]. Photonics Research, 2018, 6(4): 339 Copy Citation Text show less
    References

    [1] Y. Tsang, B. Richards, D. Binks, J. Lousteau, A. Jha. Tm3+/Ho3+ codoped tellurite fiber laser. Opt. Lett., 33, 1282-1284(2008).

    [2] T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, G.-Q. Lo. Silicon photonic platforms for mid-infrared applications [Invited]. Photon. Res., 5, 417-430(2017).

    [3] M. Klimczak, B. Siwicki, A. Heidt, R. Buczyński. Coherent supercontinuum generation in soft glass photonic crystal fibers. Photon. Res., 5, 710-727(2017).

    [4] C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, O. Bang. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photonics, 8, 830-834(2014).

    [5] W. J. Chung, K. H. Kim, B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi. Radiative emission at mid-infrared wavelengths from rare-earth ions via nanocrystal formation in oxyfluoride glasses. J. Am. Ceram. Soc., 93, 2952-2955(2010).

    [6] R. Xu, Y. Tian, L. Hu, J. Zhang. Enhanced emission of 2.7  μm pumped by laser diode from Er3+/Pr3+-codoped germanate glasses. Opt. Lett., 36, 1173-1175(2011).

    [7] A. Lin, A. Ryasnyanskiy, J. Toulouse. Fabrication and characterization of a water-free mid-infrared fluorotellurite glass. Opt. Lett., 36, 740-742(2011).

    [8] Y. Tian, T. Wei, X. Jing, J. Zhang, X. Xu. Enhanced 2.7- and 2.9-μm emissions in Er3+/Ho3+, doped fluoride glasses sensitized by Pr3+ ions. Mater. Res. Bull., 76, 67-71(2016).

    [9] P. P. Fedorov, A. A. Luginina, A. I. Popov. Transparent oxyfluoride glass ceramics. J. Fluorine Chem., 172, 22-50(2015).

    [10] G. Bai, S. Yuan, Y. Zhao, Z. Yang, S. Y. Choi, Y. Chai, S. F. Yu, S. P. Lau, J. Hao. 2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence. Adv. Mater., 28, 7472-7477(2016).

    [11] G. Bai, M.-K. Tsang, J. Hao. Luminescent ions in advanced composite materials for multifunctional applications. Adv. Funct. Mater., 26, 6330-6350(2016).

    [12] Q. Liu, Y. Tian, C. Wang, F. Huang, X. Jing, J. Zhang, X. Zhang, S. Xu. Different dominant transitions in holmium and ytterbium codoped oxyfluoride glass and glass ceramics originating from varying phonon energy environments. Phys. Chem. Chem. Phys., 19, 29833-29839(2017).

    [13] V. Lupei. Laser materials: relationship between materials and laser properties. Reference Module in Materials Science and Materials Engineering, 4416-4423(2016).

    [14] A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, J. Lousteau. Rare-earth ion doped TeO2 and GeO2 glasses as laser materials. Prog. Mater. Sci., 57, 1426-1491(2012).

    [15] Q. Liu, Y. Tian, B. Li, C. Wang, F. Huang, X. Jing, J. Zhang, S. Xu. Broadband 2  μm fluorescence and energy transfer process in Tm3+ doped germanosilicate glass. J. Lumin., 190, 76-80(2017).

    [16] Q. Chen, H. Wang, Q. Wang, Q. Chen. Structural study of the origin of the largest 1.5  μm Er3+ luminescence band width in multicomponent silicate glass. J. Non-Cryst. Solids, 404, 145-150(2014).

    [17] J. Kimpton, T. H. Randle, J. Drennan. Investigation of electrical conductivity as a function of dopant-ion radius in the systems Zr0.75Ce0.08M0.17O1.92 (M = Nd, Sm, Gd, Dy, Ho, Y, Er, Yb, Sc). Solid State Ionics, 149, 89-98(2002).

    [18] H. A. Elbatal, Z. S. Mandouh, H. A. Zayed, S. Y. Marzouk, G. M. Elkomy, A. Hosny. Thermal, structure and morphological properties of lithium disilicate glasses doped with copper oxide and their glass-ceramic derivatives. J. Non-Cryst. Solids, 358, 1806-1813(2012).

    [19] D. Di Martino, L. F. Santos, A. C. Marques, R. M. Almeida. Vibrational spectra and structure of alkali germanate glasses. J. Non-Cryst. Solids, 293-295, 394-401(2001).

    [20] P. Pascuta, L. Pop, S. Rada, M. Bosca, E. Culea. The local structure of bismuth germanate glasses and glass ceramics doped with europium ions evidenced by FT-IR spectroscopy. Vib. Spectrosc., 48, 281-284(2008).

    [21] L. R. Moorthy, T. S. Rao, K. Janardhnam, A. Radhapathy. Absorption and emission characteristics of Er3+ ions in alkali chloroborophosphate glasses. Spectrochim. Acta A, 56, 1759-1771(2000).

    [22] X. Qiao, X. Fan, M. Wang, X. Zhang. Spectroscopic properties of Er3+–Yb3+ co-doped glass ceramics containing BaF2 nanocrystals. J. Non-Cryst. Solids, 354, 3273-3277(2008).

    [23] F. Zeng, G. Ren, X. Qiu, Q. Yang, J. Chen. The effect of PbF2 content on the microstructure and upconversion luminescence of Er3+-doped SiO2–PbF2–PbO glass ceramics. J. Non-Cryst. Solids, 354, 3428-3432(2008).

    [24] B. R. Judd. Optical absorption intensities of rare-earth ions. Phys. Rev., 127, 750-761(1962).

    [25] G. S. Ofelt. Intensities of crystal spectra of rare-earth ions. J. Chem. Phys., 37, 511-520(1962).

    [26] Y. Tian, R. Xu, L. Hu, J. Zhang. Intense 2.7  μm and broadband 2.0  μm emission from diode-pumped Er3+/Tm3+/Ho3+-doped fluorophosphate glass. Opt. Lett., 36, 3218-3220(2011).

    [27] T. Wei, C. Tian, M. Cai, Y. Tian, X. Jing, J. Zhang, S. Xu. Broadband 2  μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass. J. Quantum Spectrosc. Radiat. Transfer, 161, 95-104(2015).

    [28] T. Wei, Y. Tian, C. Tian, M. Cai, X. Jing, B. Li, R. Chen, J. Zhang, S. Xu. Quantitative analysis of energy transfer and origin of quenching in Er3+/Ho3+ codoped germanosilicate glasses. J. Phys. Chem. A, 119, 6823-6830(2015).

    [29] D. L. Dexter. A theory of sensitized luminescence in solids. J. Chem. Phys., 21, 836-850(1953).

    [30] A. D. Sontakke, K. Annapurna. Energy transfer kinetics in oxy-fluoride glass and glass-ceramics doped with rare-earth ions. J. Appl. Phys., 112, 013510(2012).

    [31] D. E. McCumber. Theory of phonon terminated optical lasers. Phys. Rev., 134, A299-A306(1964).

    Qunhuo Liu, Ying Tian, Wenhua Tang, Feifei Huang, Xufeng Jing, Junjie Zhang, Shiqing Xu. Broadening and enhancing 2.7  μm emission spectra in Er/Ho co-doped oxyfluoride germanosilicate glass ceramics by imparting multiple local structures to rare earth ions[J]. Photonics Research, 2018, 6(4): 339
    Download Citation