• Journal of Inorganic Materials
  • Vol. 38, Issue 4, 367 (2023)
Yang YANG, Hangyuan CUI, Ying ZHU, Changjin WAN*, and Qing WAN*
Author Affiliations
  • School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
  • show less
    DOI: 10.15541/jim20220700 Cite this Article
    Yang YANG, Hangyuan CUI, Ying ZHU, Changjin WAN, Qing WAN. Research Progress of Flexible Neuromorphic Transistors[J]. Journal of Inorganic Materials, 2023, 38(4): 367 Copy Citation Text show less
    References

    [1] H L PARK, Y LEE, N KIM et al. Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics. Advanced Materials, 1903558(2020).

    [2] C J WAN, L Q ZHU, J M ZHOU et al. Memory and learning behaviors mimicked in nanogranular SiO2-based proton conductor gated oxide-based synaptic transistors. Nanoscale, 10194(2013).

    [3] Y PARK, J S LEE. Artificial synapses with short-and long-term memory for spiking neural networks based on renewable materials. ACS Nano, 8962(2017).

    [4] H WANG, M YANG, Q TANG et al. Flexible, conformal organic synaptic transistors on elastomer for biomedical applications. Advanced Functional Materials, 1901107(2019).

    [5] Y ZHU, B PENG, L ZHU et al. IGZO nanofiber photoelectric neuromorphic transistors with indium ratio tuned synaptic plasticity. Applied Physics Letters, 133502(2022).

    [6] S KE, C FU, X LIN et al. BCM Learning rules emulated by a-IGZO-based photoelectronic neuromorphic transistors. IEEE Transactions on Electron Devices, 4646(2022).

    [8] S KE, Y HE, L ZHU et al. Indium-gallium-zinc-oxide based photoelectric neuromorphic transistors for modulable photoexcited corneal nociceptor emulation. Advanced Electronic Materials, 2100487(2021).

    [9] Z XIAO, J HUANG. Energy-efficient hybrid perovskite memristors and synaptic devices. Advanced Electronic Materials, 1600100(2016).

    [10] Z WANG, S JOSHI, S SAVEL’EV et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nature Electronics, 137(2018).

    [11] H TIAN, Q GUO, Y XIE et al. Anisotropic black phosphorus synaptic device for neuromorphic applications. Advanced Materials, 4991(2016).

    [12] T H LEE, D LOKE, K J HUANG et al. Tailoring transient-amorphous states: towards fast and power-efficient phase-change memory and neuromorphic computing. Advanced Materials, 7493(2014).

    [13] T TUMA, A PANTAZI, GALLO M LE et al. Stochastic phase-change neurons. Nature Nanotechnology, 693(2016).

    [14] Y YANG, B CHEN, W D LU. Memristive physically evolving networks enabling the emulation of heterosynaptic plasticity. Advanced Materials, 7720(2015).

    [15] Y H LIU, L Q ZHU, P FENG et al. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Advanced Materials, 5599(2015).

    [16] Z LV, Y ZHOU, S T HAN et al. From biomaterial-based data storage to bio-inspired artificial synapse. Materials Today, 537(2018).

    [17] M L HAMMOCK, A CHORTOS, B C K TEE et al. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Advanced Materials, 5997(2013).

    [18] A CHORTOS, J LIU, Z BAO. Pursuing prosthetic electronic skin. Nature Materials, 937(2016).

    [19] J JIANG, Q WAN, J SUN et al. Ultralow-voltage transparent electric-double-layer thin-film transistors processed at room-temperature. Applied Physics Letters, 152114(2009).

    [20] Q LAI, L ZHANG, Z LI et al. Ionic/electronic hybrid materials integrated in a synaptic transistor with signal processing and learning functions. Advanced Materials, 2448(2010).

    [21] Y HE, X WANG, Y GAO et al. Oxide-based thin film transistors for flexible electronics. Journal of Semiconductors, 011005(2018).

    [22] X LIANG, Z LI, L LIU et al. Artificial synaptic transistor with solution processed InOx channel and AlOx solid electrolyte gate. Applied Physics Letters, 012102(2020).

    [23] Y CHEN, W QIU, X WANG et al. Solar-blind SnO2 nanowire photo-synapses for associative learning and coincidence detection. Nano Energy, 62: 393(2019).

    [24] S R ZHANG, L ZHOU, J Y MAO et al. Artificial synapse emulated by charge trapping-based resistive switching device. Advanced Materials Technologies, 1800342(2019).

    [25] M K KIM, J S LEE. Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics. ACS Nano, 1680(2018).

    [26] M PEREIRA, J DEUERMEIER, R NOGUEIRA et al. Noble-metal-free memristive devices based on IGZO for neuromorphic applications. Advanced Electronic Materials, 2000242(2020).

    [27] E S FORTUNE, G J ROSE. Roles for short-term synaptic plasticity in behavior. Journal of Physiology-Paris, 539(2002).

    [28] Y YANG, J WEN, L GUO et al. Long-term synaptic plasticity emulated in modified graphene oxide electrolyte gated IZO-based thin-film transistors. ACS Applied Materials & Interfaces, 30281(2016).

    [29] H LI, Y DING, H QIU et al. Flexible and compatible synaptic transistor based on electrospun In2O3 nanofibers. IEEE Transactions on Electron Devices, 5363(2022).

    [30] F SUN, Q LU, L LIU et al. Bioinspired flexible, dual-modulation synaptic transistors toward artificial visual memory systems. Advanced Materials Technologies, 1900888(2020).

    [31] Y HE, Y ZHU, C CHEN et al. Flexible oxide-based Schottky neuromorphic TFTs with configurable spiking dynamic functions. IEEE Transactions on Electron Devices, 5216(2020).

    [32] S OH, J I CHO, B H LEE et al. Flexible artificial Si-In-Zn-O/ion gel synapse and its application to sensory-neuromorphic system for sign language translation. Science Advances, eabg9450(2021).

    [36] H WEI, Y NI, L SUN et al. Flexible electro-optical neuromorphic transistors with tunable synaptic plasticity and nociceptive behavior. Nano Energy, 81: 105648(2021).

    [37] J SHI, J JIE, W DENG et al. A fully solution-printed photosynaptic transistor array with ultralow energy consumption for artificial-vision neural networks. Advanced Materials, 34: 2200380(2022).

    [39] J ZHOU, C WAN, L ZHU et al. Synaptic behaviors mimicked in flexible oxide-based transistors on plastic substrates. IEEE Electron Device Letters, 1433(2013).

    [40] J ZHOU, N LIU, L ZHU et al. Energy-efficient artificial synapses based on flexible IGZO electric-double-layer transistors. IEEE Electron Device Letters, 198(2014).

    [41] X LIU, C SUN, Z GUO et al. A flexible dual-gate hetero-synaptic transistor for spatiotemporal information processing. Nanoscale Advances, 4: 2412(2022).

    [42] Z MA, V SKUMRYEV, M GICH. Magnetic properties of synthetic fluorophlogopite mica crystals. Materials Advances, 1464(2020).

    [43] Y HE, H DONG, Q MENG et al. Mica, a potential two-dimensional-crystal gate insulator for organic field-effect transistors. Advanced Materials, 5502(2011).

    [44] D M HEPBURN, I J KEMP, A J SHIELDS. Mica. IEEE Electrical Insulation Magazine, 19(2000).

    [45] G ZHONG, M ZI, C REN et al. Flexible electronic synapse enabled by ferroelectric field effect transistor for robust neuromorphic computing. Applied Physics Letters, 092903(2020).

    [46] H JOH, M JUNG, J HWANG et al. Flexible ferroelectric hafnia-based synaptic transistor by focused-microwave annealing. ACS Applied Materials & Interfaces, 1326(2021).

    [47] C REN, G ZHONG, Q XIAO et al. Highly robust flexible ferroelectric field effect transistors operable at high temperature with low-power consumption. Advanced Functional Materials, 1906131(2020).

    [48] X ZOU, J ZOU, L LIU et al. Top-gated MoS₂negative-capacitance transistors fabricated by an integral-transfer of pulsed laser deposited HfZrO2 on mica. IEEE Transactions on Electron Devices, 3477(2022).

    [49] X DENG, S Q WANG, Y X LIU et al. A flexible mott synaptic transistor for nociceptor simulation and neuromorphic computing. Advanced Functional Materials, 2101099(2021).

    [50] H JOH, M JUNG, J HWANG et al. Flexible ferroelectric hafnia-based synaptic transistor by focused-microwave annealing. ACS Applied Materials & Interfaces, 1326(2021).

    [51] Q ZHENG, H LI, Y ZHENG et al. Cellulose-based flexible organic light-emitting diodes with enhanced stability and external quantum efficiency. Journal of Materials Chemistry C, 4496(2021).

    [52] G WU, J ZHANG, X WAN et al. Chitosan-based biopolysaccharide proton conductors for synaptic transistors on paper substrates. Journal of Materials Chemistry C, 6249(2014).

    [53] G WU, C WAN, J ZHOU et al. Low-voltage protonic/electronic hybrid indium zinc oxide synaptic transistors on paper substrates. Nanotechnology, 094001(2014).

    [54] X WANG, Y YAN, E LI et al. Stretchable synaptic transistors with tunable synaptic behavior. Nano Energy, 75: 104952(2020).

    [55] G FENG, J JIANG, Y LI et al. Flexible vertical photogating transistor network with an ultrashort channel for in-sensor visual nociceptor. Advanced Functional Materials, 2104327(2021).

    [56] S JIANG, Y HE, R LIU et al. Freestanding dual-gate oxide-based neuromorphic transistors for flexible artificial nociceptors. IEEE Transactions on Electron Devices, 415(2020).

    [57] C CHEN, Y HE, L ZHU et al. Flexible dual-gate MoS2 neuromorphic transistors on freestanding proton-conducting chitosan membranes. IEEE Transactions on Electron Devices, 3119(2021).

    [58] E ERCAN, Y C LIN, Y SAKAI-OTSUKA et al. Harnessing biobased materials in photosynaptic transistors with multibit data storage and panchromatic photoresponses extended to near-infrared band. Advanced Optical Materials, 2201240(2022).

    [59] M BEAR, B CONNORS, M A PARADISO. Neuroscience: exploring the brain, enhanced edition: exploring the brain. Burlington: Jones & Bartlett Learning(2020).

    [60] T SHIBATA, T OHMI. A functional MOS transistor featuring gate-level weighted sum and threshold operations. IEEE Transactions on Electron Devices, 1444(1992).

    [61] N LIU, L Q ZHU, P Feng et al. Flexible sensory platform based on oxide-based neuromorphic transistors. Scientific Reports, 5: 18082(2015).

    [62] L LIU, W XU, Y NI et al. Stretchable neuromorphic transistor that combines multisensing and information processing for epidermal gesture recognition. ACS Nano, 2282(2022).

    Yang YANG, Hangyuan CUI, Ying ZHU, Changjin WAN, Qing WAN. Research Progress of Flexible Neuromorphic Transistors[J]. Journal of Inorganic Materials, 2023, 38(4): 367
    Download Citation