• Journal of Innovative Optical Health Sciences
  • Vol. 11, Issue 2, 1850006 (2018)
Xuan Chu1, Wei Wang1、*, Chunyang Li2, Xin Zhao1, and Hongzhe Jiang1
Author Affiliations
  • 1College of Engineering, China Agricultural University, Beijing 100083, P. R. China
  • 2Institute of Food Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
  • show less
    DOI: 10.1142/s1793545818500062 Cite this Article
    Xuan Chu, Wei Wang, Chunyang Li, Xin Zhao, Hongzhe Jiang. Identifying camellia oil adulteration with selected vegetable oils by characteristic near-infrared spectral regions[J]. Journal of Innovative Optical Health Sciences, 2018, 11(2): 1850006 Copy Citation Text show less
    References

    [1] T. Wen, L. Zheng, Z. Gong, L. Li, J. Xie, Q. Ma, “Rapid identification of geographical origin of camellia oil based on near infrared spectroscopy technology,” Trans. Chin. Soc. Agric. Eng. 32(16), 293–299 (2016).

    [2] L. Liu, C. Hu, L. Liu, S. Zhang, K. Chen, D. He, “Rapid detection and separation of olive oil and Camellia oil based on ion mobility spectrometry fingerprints and chemometric models,” Eur. J. Lipid Sci. Technol. 119(3), (2017).

    [3] A. Bumrungpert, P. Pavadhgul, R. W. Kalpravidh, “Camellia oil-enriched diet attenuates oxidative stress and inflammatory markers in hypercholesterolemic subjects,” J. Med. Food 19(9), 895–898 (2016).

    [4] P. S. Tu, Y. T. Tung, W. T. Lee, G. C. Yen, “Protective effect of camellia oil (Camellia oleifera Abel.) against ethanol-induced acute oxidative injury of the gastric mucosa in mice,” J. Agric. Food Chem. 65, 4932–4941 (2017).

    [5] D. Zhong, F. Tang, M. Ding, R. Mo, D. Shen, Z. Li, “Simplified determination of organophosphorus pesticides in camellia oil,” Anal. Lett. 50(8), 1248–1259 (2017).

    [6] J. J. Yuan, C. Z. Wang, H. X. Chen, J. Z. Ye, H. Zhou, “Identification and detection of adulterated camellia oleifera abel. oils by near infrared transmittance spectroscopy,” Int. J. Food Prop. 19(2), 300–313 (2016).

    [7] Z. Ni, F. Tang, Y. Liu, D. Shen, R. Mo, “Multielemental analysis of camellia oil by microwave dry ashing and inductively coupled plasma mass spectrometry,” Anal. Lett. 48(11), 1777–1786 (2015).

    [8] General administration of quality supervision, inspection and quarantine of the People's Republic of China (2008a). National standards of the People's Republic of China. Inspection of grain and oils: qualitative test of oils, GB/T 5539–2008 (Standard Press of China, Beijing, 2008).

    [9] General administration of quality supervision, inspection and quarantine of the People's Republic of China (2003). National standards of the People's Republic of China. Oil-tea camellia oil, GB-11765–2003 (Standard Press of China, Beijing, 2008).

    [10] H. Jabeur, A. Zribi, J. Makni, A. Rebai, R. Abdelhedi, M. Bouaziz, “Detection of Chemlali extravirgin olive oil adulteration mixed with soybean oil, corn oil, and sunflower oil by using GC and HPLC,” J. Agric. Food Chem. 62(21), 4893–4904 (2014).

    [11] A. Rohman, A. Nugroho, E. Lukitaningsih, Sudjadi, “Application of vibrational spectroscopy in combination with chemometrics techniques for authentication of herbal medicine,” Appl. Spectrosc. Rev. 49(8), 603–613 (2014).

    [12] T. O. Mendes, R. A. da Rocha, B. L. Porto, M. A. de Oliveira, V. D. C. dos Anjos, M. J. Bell, “Quantification of extra-virgin olive oil adulteration with soybean oil: A comparative study of NIR, MIR, and Raman spectroscopy associated with chemometric approaches,” Food Anal. Methods, 8(9), 2339–2346 (2015).

    [13] S. Li, X. Zhu, J. Zhang, G. Li, D. Su, Y. Shan, “Authentication of pure camellia oil by using near infrared spectroscopy and pattern recognition techniques,” J. Food Sci. 77(4), 374–380 (2012).

    [14] J. Yuan, C. Wang, H. Chen, H. Zhou, J. Ye, “Prediction of fatty acid composition in Camellia oleifera oil by near infrared transmittance spectroscopy (NITS),” Food Chem. 138(2), 1657–1662 (2013).

    [15] C. A. Nunes, “Vibrational spectroscopy and chemometrics to assess authenticity, adulteration and intrinsic quality parameters of edible oils and fats,” Food Res. Int. 60, 255–261 (2014).

    [16] K. Javidnia, M. Parish, S. Karimi, B. Hemmateenejad, “Discrimination of edible oils and fats by combination of multivariate pattern recognition and FT-IR spectroscopy: A comparative study between different modeling methods,” Spectrochim. Acta, Part A 104, 175–181 (2013).

    [17] S. Li, X. Zhu, J. Zhang, G. Li, D. Su, Y. Shan, “Authentication of pure camellia oil by using near infrared spectroscopy and pattern recognition techniques,” J. Food Sci. 77(4), 374–380 (2012).

    [18] M. N. Hussain, M. F. A. Khir, M. H. Hisham, Z. M. Yusof, “Feasibility study of detecting canola oil adulteration with palm oil using NIR spectroscopy and multivariate analysis,” In 2014 Int. Conf. Information, Communication Technology and System (ICTS), pp. 111–114 (2014).

    [19] S. R. Karunathilaka, A. R. F. Kia, C. Srigley, J. K. Chung, M. M. Mossoba, “Nontargeted, rapid screening of extra virgin olive oil products for authenticity using near-infrared spectroscopy in combination with conformity index and multivariate statistical analyses,” J. Food Sci. 81(10) (2016).

    [20] T. O. Mendes, R. A. D. Rocha, B. L. S. Porto, M. A. L. D. Oliveira, V. D. C. D. Anjos, M. J. V. Bell, “Quantification of extra-virgin olive oil adulteration with soybean oil: A comparative study of NIR, MIR, and Raman spectroscopy associated with chemometric approaches,” Food Anal. Methods 8(9), 2339–2346 (2015).

    [21] H. Azizian, M. M. Mossoba, A. R. Fardin-Kia, P. Delmonte, S. R. Karunathilaka, J. K. Kramer, “Novel, rapid identification, and quantification of adulterants in extra virgin olive oil using nearinfrared spectroscopy and chemometrics,” Lipids, 50(7), 705–718 (2015).

    [22] M. Vohland, M. Ludwig, S. Thiele-Bruhn, B. Ludwig, “Determination of soil properties with visible to near-and mid-infrared spectroscopy: Effects of spectral variable selection,” Geoderma, 223, 88–96 (2014).

    [23] A. F. C. Pereira, M. J. C. Pontes, F. F. G., Neto, S. R. B. Santos, R. K. H. Galvao, M. C. U. Araujo, “NIR spectrometric determination of quality parameters in vegetable oils using iPLS and variable selection,” Food Res. Int. 41(4), 341–348 (2008).

    [24] M. Yang, Q. Chen, F. Y. Kutsanedzie, X. Yang, Z. Guo, Q. Ouyang, “Portable spectroscopy system determination of acid value in peanut oil based on variables selection algorithms,” Measurement 103, 179–185 (2017).

    [25] S. A. Moreira, J. Sarragua, D. F. Saraiva, R. Carvalho, J. A. Lopes, “Optimization of NIR spectroscopy based PLSR models for critical properties of vegetable oils used in biodiesel production,” Fuel 150, 697–704 (2015).

    [26] T. Woodcock, G. Downey, C. P. O'Donnell, “Confirmation of declared provenance of European extra virgin olive oil samples by NIR spectroscopy,” J. Agric. Food Chem. 56(23), 11520–11525 (2008).

    [27] B. Wang, B. Peng, “A feasibility study on monitoring residual sugar and alcohol strength in kiwi wine fermentation using a fiber-optic FT-NIR spectrometry and PLS regression,” J. Food Sci. 82(2), 358–363 (2017).

    [28] A. Villar, S. Fern-andez, E. Gorritxategi, J. I. Ciria, L. A. Fern-andez, “Optimization of the multivariate calibration of a Vis–NIR sensor for the on-line monitoring of marine diesel engine lubricating oil by variable selection methods,” Chemom. Intell. Lab. Syst. 130, 68–75 (2014).

    [29] M. Yang, Q. Chen, F. Y. Kutsanedzie, X. Yang, Z. Guo, Q. Ouyang, “Portable spectroscopy system determination of acid value in peanut oil based on variables selection algorithms,” Measurement 103, 179–185 (2017).

    [30] E. Teye, X. Huang, “Novel prediction of total fat content in cocoa beans by FT-NIR spectroscopy based on effective spectral selection multivariate regression,” Food Anal. Methods 8(4), 945–953 (2015).

    [31] E. Teye, X. Y. Huang, W. Lei, H. Dai, “Feasibility study on the use of Fourier transform near-infrared spectroscopy together with chemometrics to discriminate and quantify adulteration in cocoa beans,” Food Res. Int. 55, 288–293 (2014).

    [32] S. Kucheryavskiy, C. J. Lomborg, “Monitoring of whey quality with NIR spectroscopy — A feasibility study,” Food Chem. 176, 271–277 (2015).

    [33] M. Khorasani, J. M. Amigo, J. Sonnergaard, P. Olsen, P. Bertelsen, J. Rantanen, “Visualization and prediction of porosity in roller compacted ribbons with near-infrared chemical imaging (NIRCI),” J. Pharm. Biomed. Anal. 109, 11–17 (2015).

    [34] L. Norgaard, A. Saudland, J. Wagner, J. P. Nielsen, L. Munck, S. B. Engelsen, “Interval partial leastsquares regression (iPLS): A comparative chemometric study with an example from near-infrared spectroscopy,” Appl. Spectrosc. 54(3), 413–419 (2000).

    [35] L. Huang, J. Zhao, Q. Chen, Y. Zhang, “Rapid detection of total viable count (TVC) in pork meat by hyperspectral imaging,” Food Res. Int. 54(1), 821–828 (2013).

    [36] Y. Shao, Y. Li, L. Jiang, J. Pan, Y. He, X. Dou, “Identification of pesticide varieties by detecting characteristics of Chlorella pyrenoidosa using Visible/Near infrared hyperspectral imaging and Raman microspectroscopy technology,” Water Res. 104, 432–440 (2016).

    [37] C. H. Spiegelman, M. J. McShane, M. J. Goetz, M. Motamedi, Q. L. Yue, G. L. Cote, “Theoretical justification of wavelength selection in PLS calibration: Development of a new algorithm,” Anal. Chem. 70(1), 35–44 (1998).

    [38] H. Jiang, G. Liu, C. Mei, S. Yu, X. Xiao, Y. Ding, “Measurement of process variables in solid-state fermentation of wheat straw using FT-NIR spectroscopy and synergy interval PLS algorithm,” Spectrochim. Acta Part A, 97, 277–283 (2012).

    [39] X. Wang, Y. Bao, G. Liu, G. Li, L. Lin, “Study on the best analysis spectral section of NIR to detect alcohol concentration based on SiPLS,” Procedia Eng. 29, 2285–2290 (2012).

    [40] O. Galtier, O. Abbas, Y. Le Dr-eau, C. Rebufa, J. Kister, J. Artaud, N. Dupuy, “Comparison of PLS1-DA, PLS2-DA and SIMCA for classification by origin of crude petroleum oils by MIR and virgin olive oils by NIR for different spectral regions,” Vib. Spectrosc. 55(1), 132–140 (2011).

    [41] A. M. Inarejos-García, S. Gómez-Alonso, G. Fregapane, M. D. Salvador, “Evaluation of minor components, sensory characteristics and quality of virgin Identifying camellia oil adulteration with selected vegetable oils olive oil by near infrared (NIR) spectroscopy,” Food Res. Int. 50(1), 250–258 (2013).

    [42] D. Cozzolino, M. J. Kwiatkowski, M. Parker, W. U. Cynkar, R. G. Dambergs, M. Gishen, M. J. Herderich, “Prediction of phenolic compounds in red wine fermentations by visible and near infrared spectroscopy,” Anal. Chim. Acta. 513(1), 73–80 (2004).

    [43] A. J. Santos, O. Anjos, R. Simes, J. Rodrigues, H. Pereira, “Kappa number prediction of Acacia melanoxylon unbleached kraft pulps using NIRPLSR models with narrow interval of variation,” BioResources 9(4), 6735–6744 (2014).

    Xuan Chu, Wei Wang, Chunyang Li, Xin Zhao, Hongzhe Jiang. Identifying camellia oil adulteration with selected vegetable oils by characteristic near-infrared spectral regions[J]. Journal of Innovative Optical Health Sciences, 2018, 11(2): 1850006
    Download Citation