• Laser & Optoelectronics Progress
  • Vol. 53, Issue 8, 81407 (2016)
Zhang Dongyun1、2、*, Zhang Huifeng1、2, Dong Dongdong1、2, and Liu Zhen1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop53.081407 Cite this Article Set citation alerts
    Zhang Dongyun, Zhang Huifeng, Dong Dongdong, Liu Zhen. Numerical Simulation of Laser Attenuation in Laser Direct Metal Deposition[J]. Laser & Optoelectronics Progress, 2016, 53(8): 81407 Copy Citation Text show less
    References

    [1] Neto O O D, Vilar R. Physical-computational model to describe the interaction between a laser beam and a powder jet in laser surface processing[J]. Journal of Laser Application, 2002, 149(1): 46-51.

    [2] Tabernero I, Martínez S, Ukar E, et al. Modelling of energy attenuation due to powder flow-laser beam interaction during laser cladding process[J]. Journal of Materials Processing Technology, 2012, 212(2): 516-522.

    [3] Chuan L T, Abidin M Y Z, Abdullah H Z, et al. Effect of applied voltage on surface properties of anodised titanium in mixture of β-glycero phosphate (β-GP) and calcium acetate (CA)[C]. Proceedings of the 23rd Scientific Conference of Microscopy Society, Malaysia, 2015, 1669: 020054.

    [4] Wen S Y, Shin Y C. Modeling of transport phenomena during the coaxial laser direct deposition process[J]. Journal of Applied Physics, 2010, 108(4): 044908.

    [5] Kong F R, Kovacevic R. Modeling of heat transfer and fluid flow in the laser multilayered cladding process[J]. Metallurgical and Materials Transactions B, 2010, 41(6): 1310-1320.

    [6] Bamberger M, Kaplan W D, Medres B, et al. Calculation of process parameters for laser alloying and cladding[J]. Journal of Laser Application, 1998, 10(1): 29-33.

    [7] Huan Q, Mazumder J, Green L, et al. Laser beam analysis in direct metal deposition process[J]. Journal of Laser Application, 2005, 17(3): 136-143.

    [8] Kumar A, Roy S. Effect of three-dimensional melt pool convection on process characteristics during laser cladding[J]. Computational Materials Science, 2009, 46(2): 495-506.

    [9] de Oliveira U, Ocelik V, de Hosson J T M. Analysis of coaxial laser cladding processing conditions[J]. Surface and Coatings Technology, 2005, 197(2): 127-136.

    [10] Toyserkani E, Khajepour A, Corbin S. 3-D finite element modeling of laser cladding by powder injection: Effects of laser pulse shaping on the process[J]. Optics and Lasers in Engineering, 2004, 41(6): 849-867.

    [11] Kovalev O B, Zaitsev A V, Novichenko D, et al. Theoretical and experimental investigation of gas flows, powder transport and heating in coaxial laser direct metal deposition (DMD) process[J]. Journal of Thermal Spray Technology, 2011, 20(3): 465-478.

    [12] Devesse W, Baere D D, Guillaume P. Modeling of laser beam and powder flow interaction in laser cladding using ray-tracing[J]. Journal of Laser Applications, 2015, 27(s2): s29208.

    [13] Neto O O D, Alcalde A M, Vilar R. Interaction of a focused laser beam and a coaxial powder jet in laser surface processing[J]. Journal of Laser Application, 2007, 19(2): 84-88.

    [14] Huan Q, Mazumder J, Ki H. Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition[J]. Journal of Applied Physics, 2006, 100(2): 024903.

    [15] Loh L E, Chua C K, Yeong W, et al. Numerical investigation and an effective modelling on the selective laser melting (SLM) process with aluminium alloy 6061[J]. International Journal of Heat and Mass Transfer, 2015, 80: 288-300.

    [16] Huang Y L, Liu J, Ma N H, et al. Three-dimensional analytical model on laser-powder interaction during laser cladding[J]. Journal of Laser Application, 2006, 18(1): 42-46.

    [17] Tabernero I, Lamikiz A, Ukar E, et al. Numerical simulation and experimental validation of powder flux distribution in coaxial laser cladding[J]. Journal of Materials Processing Technology, 2010, 210(15): 2125-2134.

    [18] Ye Yunxia, Fan Dianyuan. Calculation and analysis of intensity of transmitted light by random scatters with nanoparticles[J]. Acta Optica Sinica, 2007, 27(5): 951-956.

    [19] Newhauser W D, Rechner L, Mirkovic D, et al. Benchmark measurements and simulations of dose perturbations due to metallic spheres in proton beams[J]. Radiation Measurement, 2013, 58: 37-44.

    [20] Wang L H, Jacques S L, Zheng L Q. MCML - Monte Carlo modeling of light transport in multi-layered tissues[J]. Computer Methods and Programs in Biomedicine, 1995, 47(2): 131-146.

    [21] Zurk L M, Tsang L, Ding K H, et al. Monte Carlo simulations of the extinction rate of densely packed spheres with clustered and non-clustered geometries[J]. Journal of the Optical Society of America A, 1995, 12(8): 1772-1781.

    [22] Pan T, Dali S S, Sevick-Muraca E M. Evaluation of photon migration using a two speed model for characterization of packed powder beds and dense particulate suspensions[J]. Optics Express, 2005, 13(10): 3600-3618.

    [23] Taroni P, Tarvainen T, Kolehmainen V, et al. Utilising the coupled radiative transfer-diffusion model in diffuse optical tomography[C]. SPIE, 2013, 8799: 879907.

    [24] Ntziachristos V, Tarvainen T, Pulkkinen A, et al. Image reconstruction in quantitative photoacoustic tomography using the radiative transfer equation and the diffusion approximation[C]. SPIE, 2013, 8800: 880006.

    [25] Boley C D, Khairallah S A, Rubenchik A M. Calculation of laser absorption by metal powders in additive manufacturing[J]. Applied Optics, 2015, 54(9): 2477-2482.

    [26] Zhou X B, Li S S, Stamnes K. Geometrical-optics code for computing the optical properties of large dielectric spheres[J]. Applied Optics, 2003, 42(21): 4295-4306.

    [27] Shen J Q, Wang H R. Calculation of Debye series expansion of light scattering[J]. Applied Optics, 2010, 49(13): 2422-2428.

    [28] Liu Lifeng, Dong Liying, Dong Ling, et al. Research of coaxial powder stream field in laser manufacturing[J]. Laser & Optoelectronics Progress, 2014, 51(8): 081405.

    [29] Ma Guangyi, Wang Jiangtian, Niu Fangyong, et al. Influence of powder distribution on the Al2O3 thin-wall ceramic formed by laser engineered net shaping[J]. Chinese J Lasers, 2015, 42(1): 0103006.

    [30] Medina J I, Pinkerton A J. A CFD model of the laser, coaxial powder stream and substrate interaction in laser cladding[J]. Physics Procedia, 2010, 5: 337-346.

    [31] Dingle K, Lamb J S W, Lázaro-Camí J A. Knudsen′s law and random billiards in irrational triangles[J]. Nonlinearity, 2012, 26(2): 369-388.

    [32] Wang Buxuan, Li Chunhui, Peng Xiaofeng. Stability analysis of nanoparticle suspension[J]. Journal of Basic Science and Engineering, 2003, 11(2): 167-173.

    [33] Burger T, Ploss H J, Kuhn J, et al. Diffuse reflectance and transmittance spectroscopy for the quantitative determination of scattering and absorption coefficients in quantitative powder analysis[J]. Applied Spectroscopy, 1997, 51(9): 1323-1329.

    [34] Xia Changming, Tian Hongchun, Hou Zhiyun, et al. Laser performance of Yb3+-doped photonic crystal fiber using the powder sinter direction drawn rod technology[J]. Chinese J Lasers, 2016, 43(2): 0205001.

    Zhang Dongyun, Zhang Huifeng, Dong Dongdong, Liu Zhen. Numerical Simulation of Laser Attenuation in Laser Direct Metal Deposition[J]. Laser & Optoelectronics Progress, 2016, 53(8): 81407
    Download Citation