• Chinese Journal of Lasers
  • Vol. 48, Issue 11, 1100001 (2021)
Jiang Wang and Linbao Luo*
Author Affiliations
  • School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, Anhui 230009, China
  • show less
    DOI: 10.3788/CJL202148.1100001 Cite this Article Set citation alerts
    Jiang Wang, Linbao Luo. Advances in Ga2O3-Based Solar-Blind Ultraviolet Photodetectors[J]. Chinese Journal of Lasers, 2021, 48(11): 1100001 Copy Citation Text show less
    References

    [1] Razeghi M, Rogalski A. Semiconductor ultraviolet detectors[J]. Journal of Applied Physics, 79, 7433-7473(1996).

    [2] Qin Y, Long S B, Dong H et al. Review of deep ultraviolet photodetector based on gallium oxide[J]. Chinese Physics B, 28, 018501(2019).

    [3] Guo D Y, Su Y L, Shi H Z et al. Self-powered ultraviolet photodetector with superhigh photoresponsivity (3.05 A/W) based on the GaN/sn: Ga2O3 pn junction[J]. ACS Nano, 12, 12827-12835(2018). http://www.ncbi.nlm.nih.gov/pubmed/30485072

    [4] Li Y B, Tokizono T, Liao M Y et al. Efficient assembly of bridged β-Ga2O3 nanowires for solar-blind photodetection[J]. Advanced Functional Materials, 20, 3972-3978(2010). http://dx.doi.org/10.1002/adfm.201001140

    [5] Singh Pratiyush A, Krishnamoorthy S, Vishnu Solanke S et al. High responsivity in molecular beam epitaxy grown β-Ga2O3 metal semiconductor metal solar blind deep-UV photodetector[J]. Applied Physics Letters, 110, 221107(2017). http://smartsearch.nstl.gov.cn/paper_detail.html?id=93ebbb8da3c5a554792d9840b898a4b9

    [6] Chen M X, Zhao B, Hu G F et al. Piezo-phototronic effect modulated deep UV photodetector based on ZnO-Ga2O3 heterojuction microwire[J]. Advanced Functional Materials, 28, 1706379(2018).

    [7] Muñoz E, Monroy E, Pau J L et al. III nitrides and UV detection[J]. Journal of Physics: Condensed Matter, 13, 7115-7137(2001). http://adsabs.harvard.edu/abs/2001JPCM...13.7115M

    [8] Razeghi M. Short-wavelength solar-blind detectors-status, prospects, and markets[J]. Proceedings of the IEEE, 90, 1006-1014(2002). http://www.ingentaconnect.com/content/iee/00189219/2002/00000090/00000006/art00006

    [9] Sang L W, Liao M Y, Sumiya M. A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures[J]. Sensors, 13, 10482-10518(2013). http://pubmedcentralcanada.ca/pmcc/articles/PMC3812614/

    [10] Chiou Y Z, Tang J J. GaN photodetectors with transparent indium tin oxide electrodes[J]. Japanese Journal of Applied Physics, 43, 4146-4149(2004). http://ci.nii.ac.jp/naid/150000043415

    [11] Rathkanthiwar S, Kalra A, Solanke S V et al. Gain mechanism and carrier transport in high responsivity AlGaN-based solar blind metal semiconductor metal photodetectors[J]. Journal of Applied Physics, 121, 164502(2017). http://www.researchgate.net/publication/316566029_Gain_mechanism_and_carrier_transport_in_high_responsivity_AlGaN-based_solar_blind_metal_semiconductor_metal_photodetectors

    [12] Balakrishnan K, Bandoh A, Iwaya M et al. Influence of high temperature in the growth of low dislocation content AlN bridge layers on patterned 6H-SiC substrates by metalorganic vapor phase epitaxy[J]. Japanese Journal of Applied Physics, 46, L307-L310(2007). http://ci.nii.ac.jp/naid/150000014243

    [13] Lin G T, Mo Z K, Weng Y et al. Microstructure and optical properties of c-AlN/TiN/Si(100) heterostructure[J]. Acta Optica Sinica, 39, 0816003(2019).

    [14] Yang W, Hullavarad S S, Nagaraj B et al. Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors[J]. Applied Physics Letters, 82, 3424-3426(2003). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4869254

    [15] Chen X H, Ren F F, Gu S L et al. Review of gallium-oxide-based solar-blind ultraviolet photodetectors[J]. Photonics Research, 7, 381-415(2019).

    [16] Mahajan B K, Chen Y P, Noh J et al. Electrothermal performance limit of β-Ga2O3 field-effect transistors[J]. Applied Physics Letters, 115, 173508(2019). http://www.researchgate.net/publication/336777688_Electrothermal_performance_limit_of_b-Ga2O3_field-effect_transistors

    [17] Lu X, Zhou L D, Chen L et al. Schottky X-ray detectors based on a bulk β-Ga2O3 substrate[J]. Applied Physics Letters, 112, 103502(2018). http://adsabs.harvard.edu/abs/2018ApPhL.112j3502L

    [18] Suzuki R, Nakagomi S, Kokubun Y et al. Enhancement of responsivity in solar-blind β-Ga2O3 photodiodes with a Au Schottky contact fabricated on single crystal substrates by annealing[J]. Applied Physics Letters, 94, 222102(2009).

    [19] Roy R, Hill V G, Osborn E F. Polymorphism of Ga2O3 and the system Ga2O3-H2O[J]. Journal of the American Chemical Society, 74, 719-722(1952). http://ci.nii.ac.jp/naid/20001704054

    [20] Schewski R, Wagner G, Baldini M et al. Epitaxial stabilization of pseudomorphic α-Ga2O3 on sapphire (0001)[J]. Applied Physics Express, 8, 011101(2014). http://ci.nii.ac.jp/lognavi?name=pmd&lang=jp&type=abstract&id=10.7567/APEX.8.011101

    [21] Qian H S, Gunawan P, Zhang Y X et al. Template-free synthesis of highly uniform α-GaOOH spindles and conversion to α-Ga2O3 and β-Ga2O3[J]. Crystal Growth & Design, 8, 1282-1287(2008).

    [22] Oshima Y, Víllora E G, Shimamura K. Halide vapor phase epitaxy of twin-free α-Ga2O3 on sapphire (0001) substrates[J]. Applied Physics Express, 8, 055501(2015). http://ci.nii.ac.jp/naid/150000110566

    [23] Akaiwa K, Fujita S. Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition[J]. Japanese Journal of Applied Physics, 51, 070203(2012).

    [24] Dong L P, Yu J G, Zhang Y M et al. Elements (Si, Sn, and Mg) doped α-Ga2O3: first-principles investigations and predictions[J]. Computational Materials Science, 156, 273-279(2019). http://www.sciencedirect.com/science/article/pii/S0927025618306645

    [25] Morimoto S, Nishinaka H, Yoshimoto M. Growth and characterization of F-doped α-Ga2O3 thin films with low electrical resistivity[J]. Thin Solid Films, 682, 18-23(2019). http://www.researchgate.net/publication/332775104_Growth_and_characterization_of_F-doped_a-Ga2O3_thin_films_with_low_electrical_resistivity

    [26] Marezio M, Remeika J P. Bond lengths in the α-Ga2O3 structure and the high-pressure phase of Ga2-xFexO3[J]. The Journal of Chemical Physics, 46, 1862-1865(1967). http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.1840945

    [27] Shinohara D, Fujita S. Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition[J]. Japanese Journal of Applied Physics, 47, 7311-7313(2008). http://adsabs.harvard.edu/abs/2008JaJAP..47.7311S

    [28] Kaneko K, Nomura T, Fujita S. Corundum-structured α-phase Ga2O3-Cr2O3-Fe2O3 alloy system for novel functions[J]. Physica Status Solidi (c), 7, 2467-2470(2010).

    [29] Playford H Y, Hannon A C, Barney E R et al. Structures of uncharacterised polymorphs of gallium oxide from total neutron diffraction[J]. Chemistry, 19, 2803-2813(2013). http://www.ncbi.nlm.nih.gov/pubmed/23307528

    [30] Zinkevich M, Morales F M, Nitsche H et al. Microstructural and thermodynamic study of γ-Ga2O3[J]. Zeitschrift Für Metallkunde, 95, 756-762(2004). http://www.researchgate.net/publication/284353690_Microstructural_and_thermodynamic_study_of_g-Ga_2_O_3

    [31] Playford H Y, Hannon A C, Tucker M G et al. Characterization of structural disorder in γ-Ga2O3[J]. The Journal of Physical Chemistry C, 118, 16188-16198(2014). http://www.researchgate.net/publication/264859232_Characterization_of_Structural_Disorder_in_g-Ga_2_O_3

    [32] Nakatani T, Watanabe T, Takahashi M et al. Characterization of Gamma-Ga2O3-Al2O3 prepared by solvothermal method and its performance for methane-SCR of NO[J]. The Journal of Physical Chemistry A, 113, 7021-7029(2009). http://www.ncbi.nlm.nih.gov/pubmed/19480421

    [33] Watanabe T, Miki Y, Masuda T et al. Performance of γ-Ga2O3-Al2O3 solid solutions prepared by spray pyrolysis for CH4-SCR of NO[J]. Applied Catalysis A: General, 396, 140-147(2011). http://www.sciencedirect.com/science/article/pii/S0926860X11000780

    [34] Kim J, Tahara D, Miura Y et al. First-principle calculations of electronic structures and polar properties of (κ, ε)-Ga2O3[J]. Applied Physics Express, 11, 061101(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=2b06352011603ff397508099af15e5e1

    [35] Oshima Y, Víllora E G, Matsushita Y et al. Epitaxial growth of phase-pure ε-Ga2O3 by halide vapor phase epitaxy[J]. Journal of Applied Physics, 118, 085301(2015). http://scitation.aip.org/content/aip/journal/jap/118/8/10.1063/1.4929417

    [36] Cho S B, Mishra R. Epitaxial engineering of polar ε-Ga2O3 for tunable two-dimensional electron gas at the heterointerface[J]. Applied Physics Letters, 112, 162101(2018).

    [37] Xia X C, Chen Y P, Feng Q J et al. Hexagonal phase-pure wide band gap ε-Ga2O3 films grown on 6H-SiC substrates by metal organic chemical vapor deposition[J]. Applied Physics Letters, 108, 202103(2016). http://scitation.aip.org/content/aip/journal/apl/108/20/10.1063/1.4950867?TRACK=RSS

    [38] Tahara D, Nishinaka H, Morimoto S et al. Stoichiometric control for heteroepitaxial growth of smooth ε-Ga2O3 thin films on c-plane AlN templates by mist chemical vapor deposition[J]. Japanese Journal of Applied Physics, 56, 078004(2017).

    [39] Nishinaka H, Tahara D, Yoshimoto M. Heteroepitaxial growth of ε-Ga2O3 thin films on cubic (111) MgO and (111) yttria-stablized zirconia substrates by mist chemical vapor deposition[J]. Japanese Journal of Applied Physics, 55, 1202BC(2016).

    [40] Mezzadri F, Calestani G, Boschi F et al. Crystal structure and ferroelectric properties of ε-Ga2O3 films grown on (0001)-sapphire[J]. Inorganic Chemistry, 55, 12079-12084(2016). http://pubs.acs.org/doi/10.1021/acs.inorgchem.6b02244

    [41] Yoshioka S, Hayashi H, Kuwabara A et al. Structures and energetics of Ga2O3 polymorphs[J]. Journal of Physics: Condensed Matter, 19, 346211(2007). http://adsabs.harvard.edu/abs/2007JPCM...19H6211Y

    [42] Pearton S J, Yang J C, Cary P H et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 5, 011301(2018). http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.5006941

    [43] Higashiwaki M, Sasaki K, Murakami H et al. Recent progress in Ga2O3 power devices[J]. Semiconductor Science and Technology, 31, 034001(2016). http://adsabs.harvard.edu/abs/2016SeScT..31c4001H

    [44] Kananen B E, Halliburton L E, Stevens K T et al. Gallium vacancies in β-Ga2O3 crystals[J]. Applied Physics Letters, 110, 202104(2017). http://adsabs.harvard.edu/abs/2017ApPhL.110t2104K

    [45] Kananen B E, Halliburton L E, Scherrer E M et al. Electron paramagnetic resonance study of neutral Mg acceptors in β-Ga2O3 crystals[J]. Applied Physics Letters, 111, 072102(2017). http://smartsearch.nstl.gov.cn/paper_detail.html?id=48b5569c7ce8b90371b47b1a16d76288

    [46] Bermudez V M. The structure of low-index surfaces of β-Ga2O3[J]. Chemical Physics, 323, 193-203(2006).

    [47] Peelaers H. Brillouin zone and band structure of β-Ga2O3[J]. Physica Status Solidi (b), 252, 828-832(2015). http://onlinelibrary.wiley.com/doi/pdf/10.1002/pssb.201451551

    [48] Passlack M, Schubert E F, Hobson W S et al. Ga2O3 films for electronic and optoelectronic applications[J]. Journal of Applied Physics, 77, 686-693(1995). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5151102

    [49] Huang Y, Yue S L, Wang Z L et al. Preparation and electrical properties of ultrafine Ga2O3 nanowires[J]. The Journal of Physical Chemistry B, 110, 796-800(2006). http://pubs.acs.org/doi/abs/10.1021/jp055844p

    [50] Varley J B, Weber J R, Janotti A et al. Oxygen vacancies and donor impurities in β-Ga2O3[J]. Applied Physics Letters, 97, 142106(2010). http://onlinelibrary.wiley.com/resolve/reference/ADS?id=2010ApPhL..97n2106V

    [51] Hajnal Z, Miró J, Kiss G et al. Role of oxygen vacancy defect states in the n-type conduction of β-Ga2O3[J]. Journal of Applied Physics, 86, 3792-3796(1999). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5024833

    [52] Li Y, Yang C H, Wu L Y et al. Electrical and optical properties of Si-doped Ga2O3[J]. Modern Physics Letters B, 31, 1750172(2017). http://www.worldscientific.com/doi/10.1142/S021798491750172X

    [53] Víllora E G, Shimamura K, Yoshikawa Y et al. Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping[J]. Applied Physics Letters, 92, 202120(2008).

    [54] Chikoidze E, von Bardeleben H J, Akaiwa K et al. Electrical, optical, and magnetic properties of Sn doped α-Ga2O3 thin films[J]. Journal of Applied Physics, 120, 025109(2016).

    [55] Higashiwaki M, Sasaki K, Kuramata A et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates[J]. Applied Physics Letters, 100, 013504(2012). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6123239

    [56] Ahmadi E, Koksaldi O S, Kaun S W et al. Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy[J]. Applied Physics Express, 10, 041102(2017). http://adsabs.harvard.edu/abs/2017APExp..10d1102A

    [57] Leedy K D, Chabak K D, Vasilyev V et al. Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition[J]. Applied Physics Letters, 111, 012103(2017).

    [58] Baldini M, Albrecht M, Fiedler A et al. Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy[J]. Journal of Materials Science, 51, 3650-3656(2016). http://link.springer.com/article/10.1007/s10853-015-9693-6

    [59] Su Y L, Guo D Y, Ye J H et al. Deep level acceptors of Zn-Mg divalent ions dopants in β-Ga2O3 for the difficulty to p-type conductivity[J]. Journal of Alloys and Compounds, 782, 299-303(2019). http://www.sciencedirect.com/science/article/pii/S0925838818347558

    [60] Qian Y P, Guo D Y, Chu X L et al. Mg-doped p-type β-Ga2O3 thin film for solar-blind ultraviolet photodetector[J]. Materials Letters, 209, 558-561(2017). http://www.sciencedirect.com/science/article/pii/S0167577X17312508

    [61] Wang X H, Zhang F B, Saito K et al. Electrical properties and emission mechanisms of Zn-doped β-Ga2O3 films[J]. Journal of Physics and Chemistry of Solids, 75, 1201-1204(2014). http://www.sciencedirect.com/science/article/pii/S0022369714001395

    [62] Alema F, Hertog B, Ledyaev O et al. Solar blind photodetector based on epitaxial zinc doped Ga2O3 thin film[J]. Physica Status Solidi (a), 214, 1600688(2017).

    [63] Varley J B, Janotti A, Franchini C et al. Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides[J]. Physical Review B, 85, 081109(2012).

    [64] Li L, Auer E, Liao M Y et al. Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts[J]. Nanoscale, 3, 1120-1126(2011).

    [65] Feng L G, Li Y F, Su X L et al. Growth and characterization of spindle-like Ga2O3 nanocrystals by electrochemical reaction in hydrofluoric solution[J]. Applied Surface Science, 389, 205-210(2016). http://www.sciencedirect.com/science/article/pii/S0169433216314799

    [66] Wang T, Farvid S S, Abulikemu M et al. Size-tunable phosphorescence in colloidal metastable γ-Ga2O3 nanocrystals[J]. Journal of the American Chemical Society, 132, 9250-9252(2010).

    [67] Weng W Y, Hsueh T J, Chang S J et al. A solar-blind β-Ga2O3 nanowire photodetector[J]. IEEE Photonics Technology Letters, 22, 709-711(2010). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/02041684817.html

    [68] Dai Z R, Pan Z W, Wang Z L. Gallium oxide nanoribbons and nanosheets[J]. The Journal of Physical Chemistry B, 106, 902-904(2002). http://pubs.acs.org/doi/10.1021/jp013228x

    [69] Hosein I D, Hegde M, Jones P D et al. Evolution of the faceting, morphology and aspect ratio of gallium oxide nanowires grown by vapor-solid deposition[J]. Journal of Crystal Growth, 396, 24-32(2014). http://www.sciencedirect.com/science/article/pii/S0022024814002462

    [70] Cuong N D, Park Y W, Yoon S G. Microstructural and electrical properties of Ga2O3 nanowires grown at various temperatures by vapor-liquid-solid technique[J]. Sensors and Actuators B: Chemical, 140, 240-244(2009). http://www.ingentaconnect.com/content/el/09254005/2009/00000140/00000001/art00040

    [71] Wu Y L, Chang S J, Weng W Y et al. Ga2O3 nanowire photodetector prepared on SiO2/Si template[J]. IEEE Sensors Journal, 13, 2368-2373(2013).

    [72] Oh S, Kim J, Ren F et al. Quasi-two-dimensional β-gallium oxide solar-blind photodetectors with ultrahigh responsivity[J]. Journal of Materials Chemistry C, 4, 9245-9250(2016).

    [73] Oh S, Kim C K, Kim J. High responsivity β-Ga2O3 metal-semiconductor-metal solar-blind photodetectors with ultraviolet transparent graphene electrodes[J]. ACS Photonics, 5, 1123-1128(2018). http://pubs.acs.org/doi/10.1021/acsphotonics.7b01486

    [74] Hwang W S, Verma A, Peelaers H et al. High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes[J]. Applied Physics Letters, 104, 203111(2014).

    [75] Kwon Y, Lee G, Oh S et al. Tuning the thickness of exfoliated quasi-two-dimensional β-Ga2O3 flakes by plasma etching[J]. Applied Physics Letters, 110, 131901(2017). http://adsabs.harvard.edu/abs/2017ApPhL.110m1901K

    [76] Shin G, Kim H Y, Kim J. Deep-ultraviolet photodetector based on exfoliated n-type β-Ga2O3 nanobelt/p-Si substrate heterojunction[J]. Korean Journal of Chemical Engineering, 35, 574-578(2018). http://link.springer.com/article/10.1007%2Fs11814-017-0279-7

    [77] Yang G, Jang S, Ren F et al. Influence of high-energy proton irradiation on β-Ga2O3 nanobelt field-effect transistors[J]. ACS Applied Materials & Interfaces, 9, 40471-40476(2017). http://europepmc.org/abstract/MED/29083157

    [78] Harwig T, Wubs G J, Dirksen G J. Electrical properties of β-Ga2O3 single crystals[J]. Solid State Communications, 18, 1223-1225(1976). http://www.sciencedirect.com/science/article/pii/0038109876909443

    [79] Fleischer M, Meixner H. Electron mobility in single- and polycrystalline Ga2O3[J]. Journal of Applied Physics, 74, 300-305(1993).

    [80] Ueda N, Hosono H, Waseda R et al. Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals[J]. Applied Physics Letters, 70, 3561-3563(1997). http://scitation.aip.org/content/aip/journal/apl/70/26/10.1063/1.119233

    [81] Zhang J G, Li B, Xia C T et al. Growth and spectral characterization of β-Ga2O3 single crystals[J]. Journal of Physics and Chemistry of Solids, 67, 2448-2451(2006).

    [82] Ohba E, Kobayashi T, Kado M et al. Defect characterization of β-Ga2O3 single crystals grown by vertical Bridgman method[J]. Japanese Journal of Applied Physics, 55, 1202BF(2016).

    [83] Hoshikawa K, Ohba E, Kobayashi T et al. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air[J]. Journal of Crystal Growth, 447, 36-41(2016). http://www.sciencedirect.com/science/article/pii/S0022024816301580

    [84] Aida H, Nishiguchi K, Takeda H et al. Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method[J]. Japanese Journal of Applied Physics, 47, 8506-8509(2008). http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008JaJAP..47.8506A&db_key=PHY&link_type=ABSTRACT

    [85] Mu W X, Jia Z T, Yin Y R et al. High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method[J]. Journal of Alloys and Compounds, 714, 453-458(2017). http://smartsearch.nstl.gov.cn/paper_detail.html?id=6836f10f9e5bbe516a3d2282ba366362

    [86] Galazka Z, Uecker R, Irmscher K et al. Czochralski growth and characterization of β-Ga2O3 single crystals[J]. Crystal Research and Technology, 45, 1229-1236(2010).

    [87] Tomm Y, Reiche P, Klimm D et al. Czochralski grown Ga2O3 crystals[J]. Journal of Crystal Growth, 220, 510-514(2000).

    [88] Chase A O. Growth of β-Ga2O3 by the verneuil technique[J]. Journal of the American Ceramic Society, 47, 470(1964).

    [89] Víllora E G, Shimamura K, Yoshikawa Y et al. Large-size β-Ga2O3 single crystals and wafers[J]. Journal of Crystal Growth, 270, 420-426(2004). http://www.sciencedirect.com/science/article/pii/S0022024804007614

    [90] Galazka Z, Irmscher K, Uecker R et al. On the bulk β-Ga2O3 single crystals grown by the Czochralski method[J]. Journal of Crystal Growth, 404, 184-191(2014). http://www.mendeley.com/research/bulk-betaga2o3-single-crystals-grown-czochralski-method/

    [91] Kuramata A, Koshi K, Watanabe S et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth[J]. Japanese Journal of Applied Physics, 55, 1202A2(2016).

    [92] Tang H L, He N T, Luo P et al. Ultra-wide bandgap semiconductor β-Ga2O3 single crystal growth breaks through 2 inches[J]. Journal of Synthetic Crystals, 46, 2533-2534(2017).

    [93] Zhang S N, Lian X Z, Ma Y C et al. Growth and characterization of 2-inch high quality β-Ga2O3 single crystals grown by EFG method[J]. Journal of Semiconductors, 39, 083003(2018). http://www.cnki.com.cn/Article/CJFDTotal-BDTX201808005.htm

    [94] Guo D Y, Wu Z P, Li P G et al. Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology[J]. Optical Materials Express, 4, 1067-1076(2014). http://www.onacademic.com/detail/journal_1000037636920110_e60e.html

    [95] An Y H, Zhi Y S, Wu Z P et al. Deep ultraviolet photodetectors based on p-Si/i-SiC/n-Ga2O3 heterojunction by inserting thin SiC barrier layer[J]. Applied Physics A, 122, 1036(2016). http://link.springer.com/article/10.1007/s00339-016-0576-8

    [96] Liu X Z, Guo P, Sheng T et al. β-Ga2O3 thin films on sapphire pre-seeded by homo-self-templated buffer layer for solar-blind UV photodetector[J]. Optical Materials, 51, 203-207(2016).

    [97] Qu Y Y, Wu Z P, Ai M L et al. Enhanced Ga2O3/SiC ultraviolet photodetector with graphene top electrodes[J]. Journal of Alloys and Compounds, 680, 247-251(2016). http://smartsearch.nstl.gov.cn/paper_detail.html?id=8fa0ad5aa5739c45345f781aa2ae1dd0

    [98] Ghose S, Rahman S, Hong L et al. Growth and characterization of β-Ga2O3 thin films by molecular beam epitaxy for deep-UV photodetectors[J]. Journal of Applied Physics, 122, 095302(2017). http://www.researchgate.net/publication/319501328_Growth_and_characterization_of_b-Ga_2_O_3_thin_films_by_molecular_beam_epitaxy_for_deep-UV_photodetectors

    [99] Kalarickal N K, Xia Z B. McGlone J, et al. Mechanism of Si doping in plasma assisted MBE growth of β-Ga2O3[J]. Applied Physics Letters, 115, 152106(2019).

    [100] Chen Y P, Liang H W, Xia X C et al. Effect of growth pressure on the characteristics of β-Ga2O3 films grown on GaAs (1 0 0) substrates by MOCVD method[J]. Applied Surface Science, 325, 258-261(2015).

    [101] Du X J, Li Z, Luan C N et al. Preparation and characterization of Sn-doped β-Ga2O3 homoepitaxial films by MOCVD[J]. Journal of Materials Science, 50, 3252-3257(2015).

    [102] Feng X J, Li Z, Mi W et al. Effect of annealing on the properties of Ga2O3: Mg films prepared on α-Al2O3 (0001) by MOCVD[J]. Vacuum, 124, 101-107(2016). http://www.sciencedirect.com/science/article/pii/S0042207X15300014

    [103] Ma M H, Zhang D, Li Y Q et al. High-performance solar blind ultraviolet photodetector based on single crystal orientation Mg-alloyed Ga2O3 film grown by a nonequilibrium MOCVD scheme[J]. ACS Applied Electronic Materials, 1, 1653-1659(2019). http://pubs.acs.org/doi/10.1021/acsaelm.9b00343

    [104] Hu D Q, Zhuang S W, Ma Z Z et al. Study on the optical properties of β-Ga2O3 films grown by MOCVD[J]. Journal of Materials Science: Materials in Electronics, 28, 10997-11001(2017).

    [105] Feng Z X, Johnson J M et al. MOCVD epitaxy of β-(AlxGa1-x)2O3 thin films on (010) Ga2O3 substrates and N-type doping[J]. Applied Physics Letters, 115, 120602(2019).

    [106] Orita M, Hiramatsu H, Ohta H et al. Preparation of highly conductive, deep ultraviolet transparent β-Ga2O3 thin film at low deposition temperatures[J]. Thin Solid Films, 411, 134-139(2002). http://www.sciencedirect.com/science/article/pii/S004060900200202X

    [107] Ou S L, Wuu D S, Fu Y C et al. Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition[J]. Materials Chemistry and Physics, 133, 700-705(2012). http://www.sciencedirect.com/science/article/pii/S0254058412000843

    [108] Goyal A, Yadav B S, Thakur O P et al. Effect of annealing on β-Ga2O3 film grown by pulsed laser deposition technique[J]. Journal of Alloys and Compounds, 583, 214-219(2014). http://www.sciencedirect.com/science/article/pii/S0925838813019919

    [109] Zhang F B, Saito K, Tanaka T et al. Electrical properties of Si doped Ga2O3 films grown by pulsed laser deposition[J]. Journal of Materials Science: Materials in Electronics, 26, 9624-9629(2015). http://link.springer.com/10.1007/s10854-015-3627-6

    [110] Lee S H, Kim S B, Moon Y J et al. High-responsivity deep-ultraviolet-selective photodetectors using ultrathin gallium oxide films[J]. ACS Photonics, 4, 2937-2943(2017). http://pubs.acs.org/doi/10.1021/acsphotonics.7b01054

    [111] Sheng J Z, Park E J, Shong B et al. Atomic layer deposition of an indium gallium oxide thin film for thin-film transistor applications[J]. ACS Applied Materials & Interfaces, 9, 23934-23940(2017). http://europepmc.org/abstract/MED/28644010

    [112] Hao H, Chen X, Li Z C et al. Remote plasma-enhanced atomic layer deposition of gallium oxide thin films with NH3 plasma pretreatment[J]. Journal of Semiconductors, 40, 012806(2019).

    [113] Sinha G, Adhikary K, Chaudhuri S. Sol-gel derived phase pure α-Ga2O3 nanocrystalline thin film and its optical properties[J]. Journal of Crystal Growth, 276, 204-207(2005).

    [114] Kaya A, Mao H, Gao J Y et al. An investigation of electrical and dielectric parameters of Sol-gel process enabled β-Ga2O3 as a gate dielectric material[J]. IEEE Transactions on Electron Devices, 64, 2047-2053(2017).

    [115] Lin R C, Zheng W, Zhang D et al. High-performance graphene/β-Ga2O3 heterojunction deep-ultraviolet photodetector with hot-electron excited carrier multiplication[J]. ACS Applied Materials & Interfaces, 10, 22419-22426(2018). http://europepmc.org/abstract/MED/29897734

    [116] Shen H, Yin Y N, Tian K et al. Growth and characterization of β-Ga2O3 thin films by Sol-gel method for fast-response solar-blind ultraviolet photodetectors[J]. Journal of Alloys and Compounds, 766, 601-608(2018). http://www.sciencedirect.com/science/article/pii/S0925838818324344

    [117] Li S, Guo D Y, Li P G et al. Ultrasensitive, superhigh signal-to-noise ratio, self-powered solar-blind photodetector based on n-Ga2O3/p-CuSCN core-shell microwire heterojunction[J]. ACS Applied Materials & Interfaces, 11, 35105-35114(2019). http://www.ncbi.nlm.nih.gov/pubmed/31474105

    [118] Zhang Y J, Yan J L, Li Q S et al. Optical and structural properties of Cu-doped β-Ga2O3 films[J]. Materials Science and Engineering: B, 176, 846-849(2011). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020411572812.html

    [119] Takakura K, Funasaki S, Tsunoda I et al. Investigation of the Si doping effect in β-Ga2O3 films by co-sputtering of gallium oxide and Si[J]. Physica B: Condensed Matter, 407, 2900-2902(2012). http://www.sciencedirect.com/science/article/pii/S0921452611008143

    [120] An Y H, Chu X L, Huang Y Q et al. Au plasmon enhanced high performance β-Ga2O3 solar-blind photo-detector[J]. Progress in Natural Science: Materials International, 26, 65-68(2016).

    [121] Guo D Y, Liu H, Li P G et al. Zero-power-consumption solar-blind photodetector based on β-Ga2O3/NSTO heterojunction[J]. ACS Applied Materials & Interfaces, 9, 1619-1628(2017). http://www.ncbi.nlm.nih.gov/pubmed/28006095

    [122] Guo D Y, Qin X Y, Lv M et al. Decrease of oxygen vacancy by Zn-doped for improving solar-blind photoelectric performance in β-Ga2O3 thin films[J]. Electronic Materials Letters, 13, 483-488(2017). http://link.springer.com/article/10.1007/s13391-017-7072-y

    [123] Lee S Y, Kang H C. Sn-doped β-Ga2O3 nanowires deposited by radio frequency powder sputtering[J]. Japanese Journal of Applied Physics, 57, 01AE02(2018).

    [124] Li M Q, Yang N, Wang G G et al. Highly preferred orientation of Ga2O3 films sputtered on SiC substrates for deep UV photodetector application[J]. Applied Surface Science, 471, 694-702(2019).

    [125] Xiu X Q, Zhang L Y, Li Y W et al. Application of halide vapor phase epitaxy for the growth of ultra-wide band gap Ga2O3[J]. Journal of Semiconductors, 40, 011805(2019).

    [126] Nomura K, Goto K, Togashi R et al. Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy[J]. Journal of Crystal Growth, 405, 19-22(2014). http://www.sciencedirect.com/science/article/pii/S0022024814004369

    [127] Oshima Y, Villora E G, Shimamura K. Quasi-heteroepitaxial growth of β-Ga2O3 on off-angled sapphire (0 0 0 1) substrates by halide vapor phase epitaxy[J]. Journal of Crystal Growth, 410, 53-58(2015).

    [128] Polyakov A Y, Lee I H, Smirnov N B et al. Defects at the surface of β-Ga2O3 produced by Ar plasma exposure[J]. APL Materials, 7, 061102(2019). http://www.researchgate.net/publication/333862393_Defects_at_the_surface_of_b-Ga2O3_produced_by_Ar_plasma_exposure/download

    [129] Leach J H, Udwary K, Rumsey J et al. Halide vapor phase epitaxial growth of β-Ga2O3 and α-Ga2O3 films[J]. APL Materials, 7, 022504(2019). http://www.researchgate.net/publication/329581960_Halide_vapor_phase_epitaxial_growth_of_b-Ga_2_O_3_and_a-Ga_2_O_3_films

    [130] Zhang Y N, Zhang J C, Feng Z Q et al. Impact of implanted edge termination on vertical β-Ga2O3 Schottky barrier diodes under OFF-state stressing[J]. IEEE Transactions on Electron Devices, 67, 3948-3953(2020). http://ieeexplore.ieee.org/document/9123950

    [131] Sasaki K, Kuramata A, Masui T et al. Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy[J]. Applied Physics Express, 5, 035502(2012). http://adsabs.harvard.edu/abs/2012APExp...5c5502S

    [132] Feng Z X, Bhuiyan A F M A U, Karim M R et al. MOCVD homoepitaxy of Si-doped (010) β-Ga2O3 thin films with superior transport properties[J]. Applied Physics Letters, 114, 250601(2019).

    [133] Ma N, Tanen N, Verma A et al. Intrinsic electron mobility limits in β-Ga2O3[J]. Applied Physics Letters, 109, 212101(2016). http://scitation.aip.org/content/aip/journal/apl/109/21/10.1063/1.4968550

    [134] Miller R, Alema F, Osinsky A. Epitaxial β-Ga2O3 and β-(AlxGa1-x)2O3/β-Ga2O3 heterostructures growth for power electronics[J]. IEEE Transactions on Semiconductor Manufacturing, 31, 467-474(2018).

    [135] Qiao G, Cai Q, Ma T C et al. Nanoplasmonically enhanced high-performance metastable phase α-Ga2O3 solar-blind photodetectors[J]. ACS Applied Materials & Interfaces, 11, 40283-40289(2019). http://pubs.acs.org/doi/10.1021/acsami.9b13863

    [136] Qin Y, Li L H, Zhao X L et al. Metal-semiconductor-metal ε-Ga2O3 solar-blind photodetectors with a record-high responsivity rejection ratio and their gain mechanism[J]. ACS Photonics, 7, 812-820(2020). http://pubs.acs.org/doi/10.1021/acsphotonics.9b01727

    [137] Peng Y K, Zhang Y, Chen Z W et al. Arrays of solar-blind ultraviolet photodetector based on β-Ga2O3 epitaxial thin films[J]. IEEE Photonics Technology Letters, 30, 993-996(2018). http://d.wanfangdata.com.cn/periodical/107b0714b7c631df77de6c8641fc7b92

    [138] Chen Y C, Lu Y J, Liao M Y et al. 3D solar-blind Ga2O3 photodetector array realized via origami method[J]. Advanced Functional Materials, 29, 1906040(2019). http://onlinelibrary.wiley.com/doi/10.1002/adfm.201906040

    [139] Cui S J, Mei Z X, Zhang Y H et al. Room-temperature fabricated amorphous Ga2O3 high-response-speed solar-blind photodetector on rigid and flexible substrates[J]. Advanced Optical Materials, 5, 1700454(2017). http://onlinelibrary.wiley.com/doi/10.1002/adom.201700454

    [140] Xie C, Lu X T, Liang Y et al. Patterned growth of β-Ga2O3 thin films for solar-blind deep-ultraviolet photodetectors array and optical imaging application[J]. Journal of Materials Science & Technology, 72, 189-196(2021). http://www.sciencedirect.com/science/article/pii/S1005030220308185

    [141] Lai J Y, Hasan M N, Swinnich E et al. Flexible crystalline β-Ga2O3 solar-blind photodetectors[J]. Journal of Materials Chemistry C, 8, 14732-14739(2020).

    [142] Oshima T, Okuno T, Arai N et al. Verticalsolar-blind deep-ultraviolet Schottky photodetectors based on β-Ga2O3 Substrates[J]. Applied Physics Express, 1, 011202(2008). http://ci.nii.ac.jp/naid/10024292259

    [143] Pratiyush A S, Xia Z B, Kumar S et al. MBE-grown β-Ga2O3-based Schottky UV-C photodetectors with rectification ratio ~10 7[J]. IEEE Photonics Technology Letters, 30, 2025-2028(2018). http://ieeexplore.ieee.org/document/8486991

    [144] Liu Z, Wang X, Liu Y Y et al. A high-performance ultraviolet solar-blind photodetector based on a β-Ga2O3 Schottky photodiode[J]. Journal of Materials Chemistry C, 7, 13920-13929(2019). http://pubs.rsc.org/en/content/articlelanding/2019/tc/c9tc04912f

    [145] Chen X, Liu K W, Zhang Z Z et al. Self-powered solar-blind photodetector with fast response based on Au/β-Ga2O3 nanowires array film Schottky junction[J]. ACS Applied Materials & Interfaces, 8, 4185-4191(2016).

    [146] Kokubun Y, Kubo S, Nakagomi S. All-oxide p-n heterojunction diodes comprising p-type NiO and n-type β-Ga2O3[J]. Applied Physics Express, 9, 091101(2016). http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016APExp...9i1101K&link_type=ABSTRACT

    [147] Li P G, Shi H Z, Chen K et al. Construction of GaN/Ga2O3 p-n junction for an extremely high responsivity self-powered UV photodetector[J]. Journal of Materials Chemistry C, 5, 10562-10570(2017). http://pubs.rsc.org/en/content/articlelanding/2017/tc/c7tc03746e/unauth

    [148] Chen Y C, Lu Y J, Lin C N et al. Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging[J]. Journal of Materials Chemistry C, 6, 5727-5732(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=856c2963417508bfe13729409f350000

    [149] Nakagomi S, Sakai T, Kikuchi K et al. β-Ga2O3 /p-type 4H-SiC heterojunction diodes and applications to deep-UV photodiodes[J]. Physica Status Solidi (a), 216, 1700796(2019). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204113170287.html

    [150] Zhao B, Wang F, Chen H Y et al. Solar-blind avalanche photodetector based on single ZnO-Ga2O3 core-shell microwire[J]. Nano Letters, 15, 3988-3993(2015). http://dx.doi.org/10.1021/acs.nanolett.5b00906

    [151] Zhuo R R, Wu D, Wang Y G et al. A self-powered solar-blind photodetector based on a MoS2/β-Ga2O3 heterojunction[J]. Journal of Materials Chemistry C, 6, 10982-10986(2018). http://pubs.rsc.org/en/content/articlelanding/2018/tc/c8tc04258f

    [152] Feng P, Zhang J Y, Li Q H et al. Individual β-Ga2O3 nanowires as solar-blind photodetectors[J]. Applied Physics Letters, 88, 153107(2006). http://ieeexplore.ieee.org/xpl/abstractMetrics.jsp?reload=true&arnumber=4819503

    [153] Zou R, Zhang Z, Liu Q et al. High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (l00) facet-oriented β-Ga2O3 nanobelts[J]. Small, 10, 1848-1856(2014).

    [154] Wang S L, Sun H L, Wang Z et al. In situ synthesis of monoclinic β-Ga2O3 nanowires on flexible substrate and solar-blind photodetector[J]. Journal of Alloys and Compounds, 787, 133-139(2019). http://www.sciencedirect.com/science/article/pii/S0925838819304657

    [155] Xie C, Lu X T, Ma M R et al. Catalyst-free vapor-solid deposition growth of β-Ga2O3 nanowires for DUV photodetector and image sensor application[J]. Advanced Optical Materials, 7, 1901257(2019). http://onlinelibrary.wiley.com/doi/10.1002/adom.201901257

    [156] Yang C, Liang H W, Zhang Z Z et al. Self-powered SBD solar-blind photodetector fabricated on the single crystal of β-Ga2O3[J]. RSC Advances, 8, 6341-6345(2018).

    [157] Hu Z Y, Nomoto K, Li W S et al. Breakdown mechanism in 1 kA/cm 2 and 960 V E-mode β-Ga2O3 vertical transistors[J]. Applied Physics Letters, 113, 122103(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=fe5bf590948781fce25c7b996fa22f4e

    [158] Lv Y, Zhou X Y, Long S B et al. Source-field-plated β-Ga2O3 MOSFET with record power figure of merit of 50.4 MW/cm 2[J]. IEEE Electron Device Letters, 40, 83-86(2019). http://ieeexplore.ieee.org/document/8534376/

    [159] Zeng K, Vaidya A, Singisetti U. 1.85 kV breakdown voltage in lateral field-plated Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 39, 1385-1388(2018). http://ieeexplore.ieee.org/document/8418393

    [160] Mun J K, Cho K, Chang W et al. Editors'choice -2.32 kV breakdown voltage lateral β-Ga2O3 MOSFETs with source-connected field plate[J]. ECS Journal of Solid State Science and Technology, 8, Q3079-Q3082(2019). http://www.researchgate.net/publication/331391159_Editors'_Choice-232_kV_Breakdown_Voltage_Lateral_b-Ga_2_O_3_MOSFETs_with_Source-Connected_Field_Plate

    [161] Sharma S, Zeng K, Saha S et al. Field-plated lateral Ga2O3 MOSFETs with polymer passivation and 8.03 kV breakdown voltage[J]. IEEE Electron Device Letters, 41, 836-839(2020). http://ieeexplore.ieee.org/document/9081968

    [162] Oshima T, Okuno T, Arai N et al. Flame detection by a β-Ga2O3-based sensor[J]. Japanese Journal of Applied Physics, 48, 011605(2009). http://adsabs.harvard.edu/abs/2009JaJAP..48a1605O

    [163] Mu W X, Jia Z T, Yin Y R et al. One-step exfoliation of ultra-smooth β-Ga2O3 wafers from bulk crystal for photodetectors[J]. CrystEngComm, 19, 5122-5127(2017). http://pubs.rsc.org/en/content/articlelanding/2017/ce/c7ce01076a/unauth

    [164] Liu Y X, Du L L, Liang G D et al. Ga2O3 field-effect-transistor-based solar-blind photodetector with fast response and high photo-to-dark current ratio[J]. IEEE Electron Device Letters, 39, 1696-1699(2018). http://ieeexplore.ieee.org/document/8471211

    [165] Lee S Y, Kim D H, Chong E et al. Effect of channel thickness on density of states in amorphous InGaZnO thin film transistor[J]. Applied Physics Letters, 98, 122105(2011). http://scitation.aip.org/content/aip/journal/apl/98/12/10.1063/1.3570641

    [166] Chen X H, Mu W X, Xu Y et al. Highly narrow-band polarization-sensitive solar-blind photodetectors based on β-Ga2O3 single crystals[J]. ACS Applied Materials & Interfaces, 11, 7131-7137(2019). http://www.ncbi.nlm.nih.gov/pubmed/30676013

    [167] Weng W Y, Hsueh T J, Chang S J et al. A β-Ga2O3 solar-blind photodetector prepared by furnace oxidization of GaN thin film[J]. IEEE Sensors Journal, 11, 999-1003(2011). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5582132

    [168] Suzuki R, Nakagomi S, Kokubun Y. Solar-blind photodiodes composed of a Au Schottky contact and a β-Ga2O3 single crystal with a high resistivity cap layer[J]. Applied Physics Letters, 98, 131114(2011). http://scitation.aip.org/content/aip/journal/apl/98/13/10.1063/1.3574911/cite/refworks;jsessionid=1kjk4m0g797i2.x-aip-live-02

    [169] Hu G C, Shan C X, Zhang N et al. High gain Ga2O3 solar-blind photodetectors realized via a carrier multiplication process[J]. Optics Express, 23, 13554-13561(2015). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-23-10-13554

    [170] Suzuki N, Ohira S, Tanaka M et al. Fabrication and characterization of transparent conductive Sn-doped β-Ga2O3 single crystal[J]. Physica Status Solidi (c), 4, 2310-2313(2007). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020414028803.html

    [171] Wu Z P, Bai G X, Qu Y Y et al. Deep ultraviolet photoconductive and near-infrared luminescence properties of Er 3+-doped β-Ga2O3 thin films[J]. Applied Physics Letters, 108, 211903(2016).

    [172] Zhao X L, Zhi Y S, Cui W et al. Characterization of hexagonal ɛ-Ga1. 8Sn0.2O3 thin films for solar-blind ultraviolet applications[J]. Optical Materials, 62, 651-654(2016).

    [173] Zhao X L, Wu Z P, Zhi Y S et al. Improvement for the performance of solar-blind photodetector based on β-Ga2O3 thin films by doping Zn[J]. Journal of Physics D: Applied Physics, 50, 085102(2017). http://smartsearch.nstl.gov.cn/paper_detail.html?id=da315ce7d8e7d5bd7e44ddc2a7002b93

    [174] Li W H, Zhao X L, Zhi Y S et al. Fabrication of cerium-doped β-Ga2O3 epitaxial thin films and deep ultraviolet photodetectors[J]. Applied Optics, 57, 538-543(2018). http://www.ncbi.nlm.nih.gov/pubmed/29400778

    [175] Lovejoy T C, Chen R Y, Zheng X et al. Band bending and surface defects in β-Ga2O3[J]. Applied Physics Letters, 100, 181602(2012).

    [176] Huang L, Feng Q, Han G Q et al. Comparison study of β-Ga2O3 photodetectors grown on sapphire at different oxygen pressures[J]. IEEE Photonics Journal, 9, 6803708(2017). http://ieeexplore.ieee.org/document/8006372/

    [177] Armstrong A M, Crawford M H, Jayawardena A et al. Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes[J]. Journal of Applied Physics, 119, 103102(2016).

    [178] Qian L X, Wu Z H, Zhang Y Y et al. Ultrahigh-responsivity, rapid-recovery, solar-blind photodetector based on highly nonstoichiometric amorphous gallium oxide[J]. ACS Photonics, 4, 2203-2211(2017). http://pubs.acs.org/doi/abs/10.1021/acsphotonics.7b00359

    [179] Huang H L, Xie Y N, Zhang Z F et al. Growth and fabrication of sputtered TiO2 based ultraviolet detectors[J]. Applied Surface Science, 293, 248-254(2014).

    [180] Carrano J C, Li T, Grudowski P A et al. Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN[J]. Journal of Applied Physics, 83, 6148-6160(1998). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5019922

    [181] Li H J, Zhang Y. Transmission spectrum of multilayer AlGaN thin film on sapphire substrate[J]. Acta Optica Sinica, 40, 1931002(2020).

    [182] Xu Y, An Z Y, Zhang L X et al. Solar blind deep ultraviolet β-Ga2O3 photodetectors grown on sapphire by the Mist-CVD method[J]. Optical Materials Express, 8, 2941-2947(2018). http://www.researchgate.net/publication/327334063_Solar_blind_deep_ultraviolet_b-Ga_2_O_3_photodetectors_grown_on_sapphire_by_the_Mist-CVD_method

    [183] Guo D Y, Wu Z P, An Y H et al. Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors[J]. Applied Physics Letters, 105, 023507(2014). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6857975

    [184] Qiao B S, Zhang Z Z, Xie X H et al. Avalanche gain in metal-semiconductor-metal Ga2O3 solar-blind photodiodes[J]. The Journal of Physical Chemistry C, 123, 18516-18520(2019). http://pubs.acs.org/doi/10.1021/acs.jpcc.9b02608

    [185] Han Z Y, Liang H L, Huo W X et al. Boosted UV photodetection performance in chemically etched amorphous Ga2O3 thin-film transistors[J]. Advanced Optical Materials, 8, 1901833(2020). http://onlinelibrary.wiley.com/doi/full/10.1002/adom.201901833

    [186] Lu H L, Zhou X L, Liang T et al. Oxide thin-film transistors with IMO and IGZO stacked active layers for UV detection[J]. IEEE Journal of the Electron Devices Society, 5, 504-508(2017). http://ieeexplore.ieee.org/document/8013019

    [187] Janotti A, van de Walle C G. Oxygen vacancies in ZnO[J]. Applied Physics Letters, 87, 122102(2005).

    [188] Bae H S, Yoon M H, Kim J H et al. Photodetecting properties of ZnO-based thin-film transistors[J]. Applied Physics Letters, 83, 5313-5315(2003). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4871400

    [189] Xu Y, Chen X H, Zhou D et al. Carrier transport and gain mechanisms in β-Ga2O3-based metal-semiconductor-metal solar-blind Schottky photodetectors[J]. IEEE Transactions on Electron Devices, 66, 2276-2281(2019). http://ieeexplore.ieee.org/document/8684768/

    [190] Yu Y F, Ni Z H. Photodetection based on surface plasmon-induced hot electrons[J]. Laser & Optoelectronics Progress, 56, 202403(2019).

    [191] Guo D, Li P, Wu Z et al. Inhibition of unintentional extra carriers by Mn valence change for high insulating devices[J]. Scientific Reports, 6, 24190(2016). http://pubmedcentralcanada.ca/pmcc/articles/PMC4828704/

    [192] Qian L X, Wang Y, Wu Z H et al. β-Ga2O3 solar-blind deep-ultraviolet photodetector based on annealed sapphire substrate[J]. Vacuum, 140, 106-110(2017). http://www.sciencedirect.com/science/article/pii/S0042207X16303244

    [193] Qian L X, Zhang H F, Lai P T et al. High-sensitivity β-Ga2O3 solar-blind photodetector on high-temperature pretreated c-plane sapphire substrate[J]. Optical Materials Express, 7, 3643-3653(2017). http://www.researchgate.net/publication/319949312_High-sensitivity_b-Ga_2O_3_solar-blind_photodetector_on_high-temperature_pretreated_c-plane_sapphire_substrate

    [194] Pratiyush A S, Krishnamoorthy S, Kumar S et al. Demonstration of zero bias responsivity in MBE grown β-Ga2O3 lateral deep-UV photodetector[J]. Japanese Journal of Applied Physics, 57, 060313(2018).

    [195] Qian L X, Liu H Y, Zhang H F et al. Simultaneously improved sensitivity and response speed of β-Ga2O3 solar-blind photodetector via localized tuning of oxygen deficiency[J]. Applied Physics Letters, 114, 113506(2019). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204112960720.html

    [196] Han S, Huang X L, Fang M Z et al. High-performance UV detectors based on room-temperature deposited amorphous Ga2O3 thin films by RF magnetron sputtering[J]. Journal of Materials Chemistry C, 7, 11834-11844(2019). http://hub.hku.hk/handle/10722/279479

    [197] Zhang Y F, Chen X H, Xu Y et al. Transition of photoconductive and photovoltaic operation modes in amorphous Ga2O3 -based solar-blind detectors tuned by oxygen vacancies[J]. Chinese Physics B, 28, 028501(2019).

    [198] Kalra A, Vura S, Rathkanthiwar S et al. Demonstration of high-responsivity epitaxial β-Ga2O3/GaN metal-heterojunction-metal broadband UV-A/UV-C detector[J]. Applied Physics Express, 11, 064101(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=df6af02c0bffcac448801ff4e4136faf

    [199] Chen X H, Han S, Lu Y M et al. High signal/noise ratio and high-speed deep UV detector on β-Ga2O3 thin film composed of both (400) and (2 -01) orientation β-Ga2O3 deposited by the PLD method[J]. Journal of Alloys and Compounds, 747, 869-878(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=32ae2d52b4b976ba8094cfa200932ec0

    [200] Li K H, Alfaraj N, Kang C H et al. Deep-ultraviolet photodetection using single-crystalline β-Ga2O3/NiO heterojunctions[J]. ACS Applied Materials & Interfaces, 11, 35095-35104(2019). http://pubs.acs.org/doi/10.1021/acsami.9b10626

    [201] Zhang D, Zheng W, Lin R C et al. High quality β-Ga2O3 film grown with N2O for high sensitivity solar-blind-ultraviolet photodetector with fast response speed[J]. Journal of Alloys and Compounds, 735, 150-154(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=dd1498c0790dc01939707b4ea2f92262

    [202] Li Y Q, Zhang D, Lin R C et al. Graphene interdigital electrodes for improving sensitivity in a Ga2O3∶Zn deep-ultraviolet photoconductive detector[J]. ACS Applied Materials & Interfaces, 11, 1013-1020(2019). http://www.ncbi.nlm.nih.gov/pubmed/30520294

    [203] Liu Z, Li S, Yan Z Y et al. Construction of a β-Ga2O3-based metal-oxide-semiconductor-structured photodiode for high-performance dual-mode solar-blind detector applications[J]. Journal of Materials Chemistry C, 8, 5071-5081(2020). http://pubs.rsc.org/en/content/articlelanding/2020/tc/d0tc00100g/unauth

    [204] Lee S H, Lee K M, Kim Y B et al. Sub-microsecond response time deep-ultraviolet photodetectors using α-Ga2O3 thin films grown via low-temperature atomic layer deposition[J]. Journal of Alloys and Compounds, 780, 400-407(2019). http://www.sciencedirect.com/science/article/pii/S0925838818344657

    [205] Moloney J, Tesh O, Singh M et al. Atomic layer deposited α-Ga2O3 solar-blind photodetectors[J]. Journal of Physics D: Applied Physics, 52, 475101(2019).

    [206] Zhou C Q, Liu K W, Chen X et al. Performance improvement of amorphous Ga2O3 ultraviolet photodetector by annealing under oxygen atmosphere[J]. Journal of Alloys and Compounds, 840, 155585(2020). http://www.sciencedirect.com/science/article/pii/S0925838820319496

    [207] Huang Z D, Weng W Y, Chang S J et al. Ga2O3/AlGaN/GaN heterostructure ultraviolet three-band photodetector[J]. IEEE Sensors Journal, 13, 3462-3467(2013). http://ieeexplore.ieee.org/document/6517889/

    [208] Nakagomi S, Sato T A, Takahashi Y et al. Deep ultraviolet photodiodes based on the β-Ga2O3/GaN heterojunction[J]. Sensors and Actuators A: Physical, 232, 208-213(2015). http://www.sciencedirect.com/science/article/pii/S0924424715300327

    [209] Guo X C, Hao N H, Guo D Y et al. β-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity[J]. Journal of Alloys and Compounds, 660, 136-140(2016). http://www.sciencedirect.com/science/article/pii/S0925838815317011

    [210] Mahmoud W E. Solar blind avalanche photodetector based on the cation exchange growth of β-Ga2O3/SnO2 bilayer heterostructure thin film[J]. Solar Energy Materials and Solar Cells, 152, 65-72(2016). http://www.sciencedirect.com/science/article/pii/S0927024816001173

    [211] Kong W Y, Wu G A, Wang K Y et al. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application[J]. Advanced Materials, 28, 10725-10731(2016). http://smartsearch.nstl.gov.cn/paper_detail.html?id=707143bca3369c5e3a367348984a1321

    [212] Chen X H, Xu Y, Zhou D et al. Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO isotype heterostructures[J]. ACS Applied Materials & Interfaces, 9, 36997-37005(2017). http://www.ncbi.nlm.nih.gov/pubmed/28975779

    [213] Yu J, Shan C X, Huang X M et al. ZnO-based ultraviolet avalanche photodetectors[J]. Journal of Physics D: Applied Physics, 46, 305105(2013). http://adsabs.harvard.edu/abs/2013jphd...46d5105y

    [214] Wang Y H, Cui W J, Yu J et al. One-step growth of amorphous/crystalline Ga2O3 phase junctions for high-performance solar-blind photodetection[J]. ACS Applied Materials & Interfaces, 11, 45922-45929(2019). http://pubs.acs.org/doi/10.1021/acsami.9b17409

    [215] Zhu T, Su J, Alvarez J et al. Response enhancement of self-powered visible-blind UV photodetectors by nanostructured heterointerface engineering[J]. Advanced Functional Materials, 29, 1903981(2019). http://onlinelibrary.wiley.com/doi/10.1002/adfm.201903981

    [216] Zhang Y, Zhao X Y, Chen J X et al. Self-polarized BaTiO3 for greatly enhanced performance of ZnO UV photodetector by regulating the distribution of electron concentration[J]. Advanced Functional Materials, 30, 1907650(2020). http://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201907650

    [217] Ouyang B S, Zhao H Q, Wang Z L et al. Dual-polarity response in self-powered ZnO NWs/Sb2Se3 film heterojunction photodetector array for optical communication[J]. Nano Energy, 68, 104312(2020). http://www.sciencedirect.com/science/article/pii/S2211285519310195

    [218] Hatch S M, Briscoe J, Dunn S. A self-powered ZnO-nanorod/CuSCN UV photodetector exhibiting rapid response[J]. Advanced Materials, 25, 867-871(2013). http://www.ncbi.nlm.nih.gov/pubmed/23225232

    [219] Leung S F, Ho K T, Kung P K et al. A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity[J]. Advanced Materials, 30, 1704611(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=836a489fd8616185c071c26016680763

    [220] Zheng W, Lin R, Ran J et al. Vacuum-ultraviolet photovoltaic detector[J]. ACS Nano, 12, 425-431(2018).

    [221] Su L X, Yang W, Cai J et al. Self-powered ultraviolet photodetectors driven by built-in electric field[J]. Small, 13, 1701687(2017). http://europepmc.org/abstract/MED/28926681

    [222] Wu Z P, Jiao L, Wang X L et al. A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga∶ZnO heterojunction[J]. Journal of Materials Chemistry C, 5, 8688-8693(2017). http://pubs.rsc.org/en/content/articlelanding/2017/tc/c7tc01741c

    [223] Zhao B, Wang F, Chen H Y et al. An ultrahigh responsivity (9.7 mA·W -1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures[J]. Advanced Functional Materials, 27, 1700264(2017). http://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201700264

    [224] Arora K, Goel N, Kumar M et al. Ultrahigh performance of self-powered β-Ga2O3 thin film solar-blind photodetector grown on cost-effective Si substrate using high-temperature seed layer[J]. ACS Photonics, 5, 2391-2401(2018). http://pubs.acs.org/doi/abs/10.1021/acsphotonics.8b00174

    [225] Ye K, Liu L X, Liu Y J et al. Lateral bilayer MoS2 -WS2 heterostructure photodetectors with high responsivity and detectivity[J]. Advanced Optical Materials, 7, 1900815(2019). http://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsRW5nTmV3UzIwMjEwMzAyEiA5NGQ1NzNiYjBhNWE1MzI4MTNmMjM3NWI2OGI2YTFhMxoIcndhbTNuamc%3D

    [226] Chen H Y, Lu Y, Li C et al. Multilayer PtSe2/TiO2 NRs Schottky junction for UV photodetector[J]. Acta Optica Sinica, 40, 2025001(2020).

    [227] He C R, Guo D Y, Chen K et al. α-Ga2O3 nanorod array-Cu2O microsphere p-n junctions for self-powered spectrum-distinguishable photodetectors[J]. ACS Applied Nano Materials, 2, 4095-4103(2019). http://pubs.acs.org/doi/10.1021/acsanm.9b00527

    [228] Mitra S, Pak Y, Xin B et al. Solar-blind self-powered photodetector using solution-processed amorphous core-shell gallium oxide nanoparticles[J]. ACS Applied Materials & Interfaces, 11, 38921-38928(2019). http://pubs.acs.org/doi/10.1021/acsami.9b11694

    [229] Li S, Yan Z Y, Liu Z et al. A self-powered solar-blind photodetector with large Vo cenhancing performance based on the PEDOT: PSS/Ga2O3 organic-inorganic hybrid heterojunction[J]. Journal of Materials Chemistry C, 8, 1292-1300(2020). http://pubs.rsc.org/en/content/articlelanding/2020/tc/c9tc06011a

    [230] Wang Y F, Li L, Wang H B et al. An ultrahigh responsivity self-powered solar-blind photodetector based on a centimeter-sized β-Ga2O3/polyaniline heterojunction[J]. Nanoscale, 12, 1406-1413(2020). http://pubs.rsc.org/en/content/articlelanding/2020/nr/c9nr09095a/unauth

    [231] Hawash Z, Ono L K, Qi Y B. Recent advances in spiro-MeOTAD hole transport material and its applications in organic-inorganic halide perovskite solar cells[J]. Advanced Materials Interfaces, 5, 1700623(2018). http://onlinelibrary.wiley.com/doi/10.1002/admi.201700623

    [232] Wei J, Li H, Zhao Y C et al. Suppressed hysteresis and improved stability in perovskite solar cells with conductive organic network[J]. Nano Energy, 26, 139-147(2016). http://www.sciencedirect.com/science/article/pii/S2211285516301446

    [233] Yan Z Y, Li S, Liu Z et al. High sensitivity and fast response self-powered solar-blind ultraviolet photodetector with a β-Ga2O3/spiro-MeOTAD p-n heterojunction[J]. Journal of Materials Chemistry C, 8, 4502-4509(2020).

    Jiang Wang, Linbao Luo. Advances in Ga2O3-Based Solar-Blind Ultraviolet Photodetectors[J]. Chinese Journal of Lasers, 2021, 48(11): 1100001
    Download Citation