• Advanced Photonics Nexus
  • Vol. 3, Issue 1, 016004 (2024)
Yifan Zhao1,2,3, Jun Liu1,2,3, Shuhui Li1,2,3, Andong Wang1,2,3..., Long Zhu1,2,3, Yan Luo1,2,3, Shi Chen1,2,3, Nan Zhou1,2,3, Shuang Zheng1,2,3, Jing Du1,2,3,* and Jian Wang1,2,3,*|Show fewer author(s)
Author Affiliations
  • 1Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Wuhan, China
  • 2Optics Valley Laboratory, Wuhan, China
  • 3Shenzhen Institute of Huazhong University of Science and Technology, Shenzhen, China
  • show less
    DOI: 10.1117/1.APN.3.1.016004 Cite this Article Set citation alerts
    Yifan Zhao, Jun Liu, Shuhui Li, Andong Wang, Long Zhu, Yan Luo, Shi Chen, Nan Zhou, Shuang Zheng, Jing Du, Jian Wang, "Secure optical interconnects using orbital angular momentum beams multiplexing/multicasting," Adv. Photon. Nexus 3, 016004 (2024) Copy Citation Text show less
    References

    [1] R. W. Tkach. Scaling optical communications for the next decade and beyond. Bell Labs Tech. J., 14, 3-9(2010).

    [2] E. Ciaramella et al. 1.28-Tb/s (32 × 40 Gb/s) free-space optical WDM transmission system. IEEE Photonics Technol. Lett., 21, 1121-1123(2009).

    [3] A. Turpin et al. Free-space optical polarization demultiplexing and multiplexing by means of conical refraction. Opt. Lett., 37, 4197-4199(2012).

    [4] P. J. Winzer. Modulation and multiplexing in optical communication systems, 23, 4-10(2009).

    [5] G. Gibson, J. Courtial, M. J. Padgett. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express, 12, 5448-5456(2004).

    [6] J. Wang et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [7] L. Allen et al. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [8] S. Franke-Arnold, L. Allen, M. Padgett. Advances in optical angular momentum. Laser Photonics Rev., 3, 299-313(2008).

    [9] A. M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior, and applications. Adv. Opt. Photonics, 3, 161-204(2011).

    [10] K. Dholakia, T. Čižmár. Shaping the future of manipulation. Nat. Photonics, 5, 335-342(2011).

    [11] L. Paterson et al. Controlled rotation of optically trapped microscopic particles. Science, 292, 912-914(2001).

    [12] M. P. MacDonald et al. Creation and manipulation of three-dimensional optically trapped structures. Science, 296, 1101-1103(2002).

    [13] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343-348(2011).

    [14] K. Toyoda et al. Using optical vortex to control the twisted metal nanostructures. Nano Lett., 12, 3645-3649(2012).

    [15] M. R. Dennis et al. Isolated optical vortex knots. Nat. Phys., 6, 118-121(2010).

    [16] S. Bernet et al. Quantitative imaging of complex samples by spiral phase contrast microscopy. Opt. Express, 14, 3792-3805(2006).

    [17] N. M. Elias. Photon orbital angular momentum in astronomy. Astron. Astrophys., 492, 883-922(2008).

    [18] A. Mair et al. Entanglement of the orbital angular momentum states of photons. Nature, 412, 313-316(2001).

    [19] G. Molina-Terriza, J. P. Torres, L. Torner. Twisted photons. Nat. Phys., 3, 305-310(2007).

    [20] J. T. Barreiro, T.-C. Wei, P. G. Kwiat. Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys., 4, 282-286(2008).

    [21] E. Nagali et al. Optimal quantum cloning of orbital angular momentum photon qubits through Hong–Ou–Mandel coalescence. Nat. Photonics, 3, 720-723(2009).

    [22] J. Leach et al. Quantum correlations in optical angle-orbital angular momentum variables. Science, 329, 662-665(2010).

    [23] N. Bozinvic et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340,, 1545-1548(2013).

    [24] J. Wang et al. N-dimensional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM Pol-Muxed 26 OAM modes, Mo.4.5.1(2014).

    [25] J. Wang et al. Ultra-high 435-bit/s/Hz spectral efficiency using N-dimentional multiplexing and modulation link with pol-muxed 52 orbital angular momentum (OAM) modes carrying Nyquist 32-QAM signals, Th.2.5.4(2015).

    [26] D. L. Begley. Free-space laser communications: a historical perspective, 3, 391-392(2002).

    [27] W. S. Rabinovich et al. Free space optical communications research at the US Naval Research Laboratory. Proc. SPIE, 7587, 758702(2010).

    [28] A. H. Hashim et al. Modeling and performance study of inter-satellite optical wireless communication system(2010).

    [29] D. Divsalar, F. Pollara. Multiple turbo codes for deep-space communications(1995).

    [30] K. S. Andrews et al. The development of turbo and LDPC codes for deep-space applications. Proc. IEEE, 95, 2142-2156(2007).

    [31] T. Komine, M. Nakagawa. Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron., 50, 100-107(2004).

    [32] G. A. Shaw et al. Recent progress in short-range ultraviolet communication. Proc. SPIE, 5796, 214-225(2005).

    [33] M. Krenn et al. Communication with spatially modulated light through turbulent air across Vienna. New J. Phys., 16, 113028(2015).

    [34] G. Vallone et al. Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett., 113, 060503(2014).

    [35] Y. Ren et al. Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free space optical link over 120 m. Opt. Lett., 41, 622-625(2015).

    [36] Y. Zhao et al. Experimental demonstration of 260-meter security free-space optical data transmission using 16-QAM carrying orbital angular momentum (OAM) beams multiplexing, Th1H.3(2016).

    [37] M. A. Khalighi, M. Uysal. Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tut., 16, 2231-2258(2014).

    [38] V. W. S. Chan. Free-space optical communications. J. Lightwave Technol., 24, 4750-4762(2006).

    [39] H. A. Willebrand, B. S. Ghuman. Fiber optics without fiber. IEEE Spectr., 40, 41-45(2001).

    [40] E. Leitgeb. Current optical technologies for wireless access, 7-17(2009).

    [41] D. Kedar, S. Arnon. Urban optical wireless communication networks: the main challenges and possible solutions. IEEE Commun. Mag., 42, S2-S7(2004).

    [42] L. Zhu, J. Wang. Simultaneous generation of multiple orbital angular momentum (OAM) modes using a single phase-only element. Opt. Express, 23, 26233(2015).

    [43] S. Li, J. Wang. Adaptive power-controllable orbital angular momentum (OAM) multicasting. Sci. Rep., 5, 9677(2016).

    [44] L. Li et al. Performance enhancement of an orbital-angular-momentum-based free-space optical communication link through beam divergence controlling, M2F.6(2015).

    Yifan Zhao, Jun Liu, Shuhui Li, Andong Wang, Long Zhu, Yan Luo, Shi Chen, Nan Zhou, Shuang Zheng, Jing Du, Jian Wang, "Secure optical interconnects using orbital angular momentum beams multiplexing/multicasting," Adv. Photon. Nexus 3, 016004 (2024)
    Download Citation