• Laser & Optoelectronics Progress
  • Vol. 60, Issue 1, 0123001 (2023)
Qiaohua Wu, Yingqiu Zhang, Xing Liu, and Chunlei Li*
Author Affiliations
  • College of Science, Northeast Forestry University, Harbin 150040, Heilongjiang , China
  • show less
    DOI: 10.3788/LOP220797 Cite this Article Set citation alerts
    Qiaohua Wu, Yingqiu Zhang, Xing Liu, Chunlei Li. Fano Resonance and Sensing Characteristics of Square-Cavity-Coupled Straight Waveguide[J]. Laser & Optoelectronics Progress, 2023, 60(1): 0123001 Copy Citation Text show less
    References

    [1] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).

    [2] Haddouche I, Cherbi L. Comparison of finite element and transfer matrix methods for numerical investigation of surface plasmon waveguides[J]. Optics Communications, 382, 132-137(2017).

    [3] Wang M Y, Luan R Q, Su Y et al. Fano resonance and sensing characteristics of MIM waveguide with H-shaped cavity[J]. Laser & Optoelectronics Progress, 59, 2124002(2022).

    [4] Xiang T Y, Lei T, Shen Z Y et al. Fano resonances in planar toroidal metamaterials[J]. Laser & Optoelectronics Progress, 58, 0916001(2021).

    [5] Zhao J, Wang J X, Qiu W B et al. Investigation of sensing characteristic of graphene metamaterial based on Fano resonance[J]. Laser & Optoelectronics Progress, 58, 0524001(2021).

    [6] Xiao G L, Xu J L, Yang H Y et al. A plasmon multi-channel wavelength-division multiplexer constructed with a nanodisk structure embedded in a rectangular metal block[J]. Acta Optica Sinica, 38, 1206006(2018).

    [7] Chen Y, Luo P, Tian Y N et al. Fano resonance slow light characteristics of metal-dielectric-metal waveguide coupled ring cavity with metallic double-slit[J]. Acta Optica Sinica, 37, 0924002(2017).

    [8] Gong Y K, Liu X M, Wang L R. High-channel-count plasmonic filter with the metal-insulator-metal Fibonacci-sequence gratings[J]. Optics Letters, 35, 285-287(2010).

    [9] Chen Z, Yu L, Wang L L et al. A refractive index nanosensor based on fano resonance in the plasmonic waveguide system[J]. IEEE Photonics Technology Letters, 27, 1695-1698(2015).

    [10] Lu H, Liu X M, Mao D et al. Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators[J]. Optics Letters, 37, 3780-3782(2012).

    [11] Li D C, Du K, Liang S H et al. Wide band dispersionless slow light in hetero-MIM plasmonic waveguide[J]. Optics Express, 24, 22432-22437(2016).

    [12] Lu H, Liu X M, Wang L R et al. Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator[J]. Optics Express, 19, 2910-2915(2011).

    [13] Limonov M F, Rybin M V, Poddubny A N et al. Fano resonances in photonics[J]. Nature Photonics, 11, 543-554(2017).

    [14] Fan S H, Suh W, Joannopoulos J D. Temporal coupled-mode theory for the Fano resonance in optical resonators[J]. Journal of the Optical Society of America A, 20, 569-572(2003).

    [15] Chen Z, Yu L, Wang L L et al. Sharp asymmetric line shapes in a plasmonic waveguide system and its application in nanosensor[J]. Journal of Lightwave Technology, 33, 3250-3253(2015).

    [16] Ma S B, Liu Q, Qian X C et al. Controllability study of surface plasmon resonance spectra of aluminium nanoparticles[J]. Acta Optica Sinica, 37, 0931001(2017).

    [17] Liu X, Li J N, Chen J F et al. Fano resonance based on D-shaped waveguide structure and its application for human hemoglobin detection[J]. Applied Optics, 59, 6424-6430(2020).

    [18] Al Mahmud R, Faruque M O, Sagor R H. A highly sensitive plasmonic refractive index sensor based on triangular resonator[J]. Optics Communications, 483, 126634(2021).

    [19] Wang M M, Yun L Y, Wang Y F et al. Plasma refractive index nanosensor based on fano resonance[J]. Laser & Optoelectronics Progress, 57, 052401(2020).

    [20] Chauhan D, Adhikari R, Saini R K et al. Subwavelength plasmonic liquid sensor using Fano resonance in a ring resonator structure[J]. Optik, 223, 165545(2020).

    [21] Chen Z, Song X K, Jiao R Z et al. Tunable electromagnetically induced transparency in plasmonic system and its application in nanosensor and spectral splitting[J]. IEEE Photonics Journal, 7, 4801408(2015).

    [22] Jankovic N, Cselyuszka N. Multiple fano-like MIM plasmonic structure based on triangular resonator for refractive index sensing[J]. Sensors, 18, 287(2018).

    [23] Hu F F, Yi H X, Zhou Z P. Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities[J]. Optics Express, 19, 4848-4855(2011).

    [24] Zhu J H, Huang X G, Mei X. High-resolution plasmonic refractive-index sensor based on a metal-insulator-metal structure[J]. Chinese Physics Letters, 28, 054205(2011).

    [25] Becker J, Trügler A, Jakab A et al. The optimal aspect ratio of gold nanorods for plasmonic bio-sensing[J]. Plasmonics, 5, 161-167(2010).

    [26] Xu D J, Yan S B, Yang X Y et al. A nanoscale structure based on a ring with matchstick-shape cavity for glucose concentration and temperature detection[J]. IEEE Sensors Journal, 21, 4442-4450(2021).

    [27] Zhu J, Li N. MIM waveguide structure consisting of a semicircular resonant cavity coupled with a key-shaped resonant cavity[J]. Optics Express, 28, 19978-19987(2020).

    [28] Hu F, Chen F, Zhang H F et al. Sensor based on multiple Fano resonances in MIM waveguide resonator system with silver nanorod-defect[J]. Optik, 229, 166237(2021).

    [29] Qi Y P, Ding J H, Zhang T et al. Tunable Fano resonance in plasmonic MIM waveguide with P-shaped resonator for refractive index sensing[J]. Europhysics Letters, 134, 67001(2021).

    [30] Zhou C, Huo Y P, Guo Y Y et al. Tunable multiple fano resonances and stable plasmonic band-stop filter based on a metal-insulator-metal waveguide[J]. Plasmonics, 16, 1735-1743(2021).

    Qiaohua Wu, Yingqiu Zhang, Xing Liu, Chunlei Li. Fano Resonance and Sensing Characteristics of Square-Cavity-Coupled Straight Waveguide[J]. Laser & Optoelectronics Progress, 2023, 60(1): 0123001
    Download Citation