[1] Grover L K. Quantum computers can search rapidly by using almost any transformation [J]. Phys. Rev. Lett., 1998, 80(19): 4329-4332.
[2] Chen L B, Sham L J, Wakes E. Optically controlled phase gate for two spin qubits in coupled quantum dots [J]. Phys. Rev. B, 2012, 85: 115319.
[3] Strauch F W. Quantum logic gates for superconducting resonator qudits [J]. Phys. Rev. A, 2011, 84: 052313.
[4] Price M D, Somaroo S S, et al. Generalized methods for the development of quantum logic gates for an NMR quantum information processor [J]. Phys. Rev. A, 1999, 60(4): 2777-2780.
[5] Monz T, Kim K, H nsel W, et al. Realization of the quantum Toffoli gate with trapped ions [J]. Phys. Rev. Lett., 2009, 102: 040501.
[6] Zheng S B, Guo G C. Efficient scheme for two-atom entanglement and quantum information processing in cavity QED [J]. Phys. Rev. Lett., 2000, 85(11): 2392-2395.
[7] Zou X B, Dong Y L, Guo G C. Implementing a conditional Z gate by a combination of resonant interaction and quantum interference [J]. Phys. Rev. A, 2006, 74: 032325.
[8] Shao X Q, Zhu A D, Zhang S. Efficient scheme for implementing an N-qubit Toffoli gate by a single resonant interaction with cavity quantum electrodynamics [J]. Phys. Rev. A, 2007, 75: 034307.
[9] Chen C Y, Feng M, Gao K L. Toffoli gate originating from a single resonant interaction with cavity QED [J]. Phys. Rev. A, 2006, 73: 064304.
[11] Ladd T D, Yamamoto Y. Simple quantum logic gate with quantum dot cavity QED systems [J]. Phys. Rev. B, 2011, 84: 235307.
[12] Zheng S B. Simplified construction and physical realization of n-qubit controlled phase gates [J]. Phys. Rev. A, 2012, 86: 012326.
[13] Song K H, Shi Z G, Xiang S H, et al. Multi-qubit controlled-NOT gates and Greenberger-Horne-Zeilinger state generation using one qubit simultaneously controlling n qubits [J]. Phys. B, 2012, 407: 3596-3599.
[14] Zheng S B. Implementation of Toffili gates with a single asymmetric Heisenberg XY interaction [J]. Phys. Rev. A, 2013, 87: 042318.
[15] Miroshnichenko G P, Trifanov A I. Conditional phase shift for quantum CCNOT operation [J]. Quantum Inf. Process., 2013, 12: 1417-1428.
[16] Ye L, Guo G C. Scheme for implementing quantum dense coding in cavity QED [J]. Phys. Rev. A, 2005, 71: 034304.
[17] Chau H F, Wilczek F. Simple realization of the Fredkin gate using a series of two-body operators [J]. Phys. Rev. Lett., 1995, 75(4): 748-750.