• Chinese Journal of Lasers
  • Vol. 49, Issue 12, 1201001 (2022)
Jun Liu1、2 and Jian Wang1、2、*
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • 2Optics Valley Laboratory, Hubei 430074, Hubei, China
  • show less
    DOI: 10.3788/CJL202249.1201001 Cite this Article Set citation alerts
    Jun Liu, Jian Wang. Research Progress of Vortex Laser[J]. Chinese Journal of Lasers, 2022, 49(12): 1201001 Copy Citation Text show less
    References

    [1] Dennis M R, O’Holleran K, Padgett M J. Chapter 5: singular optics: optical vortices and polarization singularities[M]. Progress in optics, 293-363(2009).

    [2] Zhan Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 1, 1-57(2009).

    [3] Ramachandran S, Kristensen P. Optical vortices in fiber[J]. Nanophotonics, 2, 455-474(2013).

    [4] Allen L, Beijersbergen M W, Spreeuw R J C et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review. A, Atomic, Molecular, and Optical Physics, 45, 8185-8189(1992).

    [5] Lavery M P J, Speirits F C, Barnett S M et al. Detection of a spinning object using light’s orbital angular momentum[J]. Science, 341, 537-540(2013).

    [6] Dholakia K, Čižmár T. Shaping the future of manipulation[J]. Nature Photonics, 5, 335-342(2011).

    [7] Fang L, Padgett M J, Wang J. Sharing a common origin between the rotational and linear Doppler effects[J]. Laser & Photonics Reviews, 11, 1700183(2017).

    [8] Paterson L, MacDonald M P, Arlt J et al. Controlled rotation of optically trapped microscopic particles[J]. Science, 292, 912-914(2001).

    [9] Padgett M J, Bowman R. Tweezers with a twist[J]. Nature Photonics, 5, 343-348(2011).

    [10] Bernet S, Jesacher A, Fürhapter S et al. Quantitative imaging of complex samples by spiral phase contrast microscopy[J]. Optics Express, 14, 3792-3805(2006).

    [11] Wang J, Liu J, Li S H et al. Orbital angular momentum and beyond in free-space optical communications[J]. Nanophotonics, 11, 645-680(2021).

    [12] Vieira J, Trines R M G M, Alves E P et al. Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering[J]. Nature Communications, 7, 10371(2016).

    [13] Elias N M. Photon orbital angular momentum in astronomy[J]. Astronomy & Astrophysics, 492, 883-922(2008).

    [14] Liu J, Nape I, Wang Q et al. Multidimensional entanglement transport through single-mode fiber[J]. Science Advances, 6, eaay0837(2020).

    [15] Wang J, Yang J Y, Fazal I M et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 6, 488-496(2012).

    [16] Liu J, Li S M, Zhu L et al. Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters[J]. Light: Science & Applications, 7, 17148(2018).

    [17] Winzer P J. Modulation and multiplexing in optical communication systems[C](2009).

    [18] Winzer P J, Foschini G J. MIMO capacities and outage probabilities in spatially multiplexed optical transport systems[J]. Optics Express, 19, 16680-16696(2011).

    [19] Zhou X, Yu J J. Multi-level, multi-dimensional coding for high-speed and high-spectral-efficiency optical transmission[J]. Journal of Lightwave Technology, 27, 3641-3653(2009).

    [20] Winzer P J, Gnauck A H, Doerr C R et al. Spectrally efficient long-haul optical networking using 112-gb/s polarization-multiplexed 16-QAM[J]. Journal of Lightwave Technology, 28, 547-556(2010).

    [21] Wang J. Advances in communications using optical vortices[J]. Photonics Research, 4, B14-B28(2016).

    [22] Wang J. Data information transfer using complex optical fields: a review and perspective (Invited Paper)[J]. Chinese Optics Letters, 15, 30005(2017).

    [23] Willner A E, Huang H, Yan Y et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 7, 66-106(2015).

    [24] Wang J. Twisted optical communications using orbital angular momentum[J]. Science China Physics, Mechanics & Astronomy, 62, 034201(2018).

    [25] Huang H, Xie G D, Yan Y et al. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength[J]. Optics Letters, 39, 197-200(2014).

    [26] Lei T, Zhang M, Li Y R et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings[J]. Light: Science & Applications, 4, e257(2015).

    [27] Liu J, Wang J. Polarization-insensitive PAM-4-carrying free-space orbital angular momentum (OAM) communications[J]. Optics Express, 24, 4258-4269(2016).

    [28] Bozinovic N, Yue Y, Ren Y X et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 340, 1545-1548(2013).

    [29] Gregg P, Kristensen P, Ramachandran S. Conservation of orbital angular momentum in air-core optical fibers[J]. Optica, 2, 267-270(2015).

    [30] Chen S, Wang J. Characterization of red/green/blue orbital angular momentum modes in conventional G.652 fiber[J]. IEEE Journal of Quantum Electronics, 53, 7200308(2017).

    [31] Huang H, Milione G, Lavery M P J et al. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre[J]. Scientific Reports, 5, 14931(2015).

    [32] Wang A D, Zhu L, Liu J et al. Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network[J]. Optics Express, 23, 29457-29466(2015).

    [33] Liu J, Li S M, Du J et al. Performance evaluation of analog signal transmission in an integrated optical vortex emitter to 3.6-km few-mode fiber system[J]. Optics Letters, 41, 1969-1972(2016).

    [34] Chen S, Liu J, Zhao Y F et al. Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber[J]. Scientific Reports, 6, 38181(2016).

    [35] Zhu G X, Hu Z Y, Wu X et al. Scalable mode division multiplexed transmission over a 10-km ring-core fiber using high-order orbital angular momentum modes[J]. Optics Express, 26, 594-604(2018).

    [36] Zhu L, Zhu G X, Wang A D et al. 18 km low-crosstalk OAM+WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation[J]. Optics Letters, 43, 1890-1893(2018).

    [37] Liu J, Zhu L, Wang A D et al. All-fiber pre- and post-data exchange in km-scale fiber-based twisted lights multiplexing[J]. Optics Letters, 41, 3896-3899(2016).

    [38] Liu J, Wang J. Demonstration of reconfigurable joint orbital angular momentum mode and space switching[J]. Scientific Reports, 6, 37331(2016).

    [39] Milione G, Lavery M P J, Huang H et al. 4×20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer[J]. Optics Letters, 40, 1980-1983(2015).

    [40] Baghdady J, Miller K, Morgan K et al. Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing[J]. Optics Express, 24, 9794-9805(2016).

    [41] Zhao Y F, Wang A D, Zhu L et al. Performance evaluation of underwater optical communications using spatial modes subjected to bubbles and obstructions[J]. Optics Letters, 42, 4699-4702(2017).

    [42] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).

    [43] Patel C K N. Continuous-wave laser action on vibrational-rotational transitions of CO2[J]. Physical Review, 136, A1187-A1193(1964).

    [44] Hargrove L E, Fork R L, Pollack M A. Locking of He-Ne laser modes induced by synchronous intracavity modulation[J]. Applied Physics Letters, 5, 4-5(1964).

    [45] Aoyagi Y, Aoyagi T, Namba S. Tunable distributed feedback dye laser[J]. The Review of Laser Engineering, 3, 90-95(1975).

    [46] Hall R N, Fenner G E, Kingsley J D et al. Coherent light emission from GaAs junctions[J]. Physical Review Letters, 9, 366-368(1962).

    [47] Snitzer E. Optical maser action of Nd+3 in a Barium crown glass[J]. Physical Review Letters, 7, 444-446(1961).

    [48] Beijersbergen M W, Coerwinkel R P C, Kristensen M et al. Helical wavefront laser beams produced with a spiral phaseplate[J]. Optics Communications, 112, 321-327(1994).

    [49] Marrucci L, Karimi E, Slussarenko S et al. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications[J]. Journal of Optics, 13, 064001(2011).

    [50] Heckenberg N R, McDuff R, Smith C P et al. Generation of optical phase singularities by computer-generated holograms[J]. Optics Letters, 17, 221-223(1992).

    [51] Liu J, Wang J. Demonstration of polarization-insensitive spatial light modulation using a single polarization-sensitive spatial light modulator[J]. Scientific Reports, 5, 9959(2015).

    [52] Maurer C, Jesacher A, Bernet S et al. What spatial light modulators can do for optical microscopy[J]. Laser & Photonics Reviews, 5, 81-101(2011).

    [53] Forbes A, Dudley A, McLaren M. Creation and detection of optical modes with spatial light modulators[J]. Advances in Optics and Photonics, 8, 200-227(2016).

    [54] Yan Y, Zhang L, Wang J et al. Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes[J]. Optics Letters, 37, 3294-3296(2012).

    [55] Wong G K L, Kang M S, Lee H W et al. Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber[J]. Science, 337, 446-449(2012).

    [56] Li S H, Mo Q, Hu X et al. Controllable all-fiber orbital angular momentum mode converter[J]. Optics Letters, 40, 4376-4379(2015).

    [57] Su T H, Scott R P, Djordjevic S S et al. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices[J]. Optics Express, 20, 9396-9402(2012).

    [58] Cai X L, Wang J W, Strain M J et al. Integrated compact optical vortex beam emitters[J]. Science, 338, 363-366(2012).

    [59] Guan B B, Scott R P, Qin C et al. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit[J]. Optics Express, 22, 145-156(2014).

    [60] Strain M J, Cai X L, Wang J W et al. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters[J]. Nature Communications, 5, 4856(2014).

    [61] Du J, Wang J. Chip-scale optical vortex lattice generator on a silicon platform[J]. Optics Letters, 42, 5054-5057(2017).

    [62] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [63] Li G X, Kang M, Chen S M et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light[J]. Nano Letters, 13, 4148-4151(2013).

    [64] Yang Y M, Wang W Y, Moitra P et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Letters, 14, 1394-1399(2014).

    [65] Karimi E, Schulz S A, de Leon I et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light: Science & Applications, 3, e167(2014).

    [66] Devlin R C, Ambrosio A, Rubin N A et al. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 358, 896-901(2017).

    [67] Du J, Wang J. Dielectric metasurfaces enabling twisted light generation/detection/(de)multiplexing for data information transfer[J]. Optics Express, 26, 13183-13194(2018).

    [68] Okida M, Omatsu T, Itoh M et al. Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd∶YVO4 1.3-mum bounce laser[J]. Optics Express, 15, 7616-7622(2007).

    [69] Lee A J, Zhang C Y, Omatsu T et al. An intracavity, frequency-doubled self-Raman vortex laser[J]. Optics Express, 22, 5400-5409(2014).

    [70] Chard S P, Shardlow P C, Damzen M J. High-power non-astigmatic TEM_00 and vortex mode generation in a compact bounce laser design[J]. Applied Physics B, 97, 275-280(2009).

    [71] Huang X X, Xu B, Cui S W et al. Direct generation of vortex laser by rotating induced off-axis pumping[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1601606(2018).

    [72] Wang S, Zhang S L, Qiao H C et al. Direct generation of vortex beams from a double-end polarized pumped Yb∶KYW laser[J]. Optics Express, 26, 26925-26932(2018).

    [73] Beijersbergen M W, Allen L, van der Veen H E L O et al. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Optics Communications, 96, 123-132(1993).

    [74] Thirugnanasambandam M P, Senatsky Y, Ueda K. Generation of very-high order Laguerre-Gaussian modes in Yb∶YAG ceramic laser[J]. Laser Physics Letters, 7, 637-643(2010).

    [75] Ito A, Kozawa Y, Sato S. Generation of hollow scalar and vector beams using a spot-defect mirror[J]. Journal of the Optical Society of America A, 27, 2072-2077(2010).

    [76] Chen Y F, Lan Y P, Wang S C. Generation of Laguerre-Gaussian modes in fiber-coupled laser diode end-pumped lasers[J]. Applied Physics B, 72, 167-170(2001).

    [77] Kozawa Y, Sato S. Generation of a radially polarized laser beam by use of a conical Brewster prism[J]. Optics Letters, 30, 3063-3065(2005).

    [78] Fang Z Q, Xia K G, Yao Y et al. Radially polarized and passively Q-switched Nd∶YAG laser under annular-shaped pumping[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 337-342(2015).

    [79] Naidoo D, Roux F S, Dudley A et al. Controlled generation of higher-order Poincaré sphere beams from a laser[J]. Nature Photonics, 10, 327-332(2016).

    [80] Qiao Z, Xie G Q, Wu Y H et al. Generating high-charge optical vortices directly from laser up to 288th order[J]. Laser & Photonics Reviews, 12, 1800019(2018).

    [81] Dong J, Wang X L, Zhang M M et al. Structured optical vortices with broadband comb-like optical spectra in Yb∶Y3Al5O12/YVO4 Raman microchip laser[J]. Applied Physics Letters, 112, 161108(2018).

    [82] Sroor H, Huang Y W, Sephton B et al. High-purity orbital angular momentum states from a visible metasurface laser[J]. Nature Photonics, 14, 498-503(2020).

    [83] Litvin I A, Ngcobo S, Naidoo D et al. Doughnut laser beam as an incoherent superposition of two petal beams[J]. Optics Letters, 39, 704-707(2014).

    [84] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 85, 3966-3969(2000).

    [85] Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 305, 788-792(2004).

    [86] Zhou N, Wang J. Metasurface-assisted orbital angular momentum carrying Bessel-Gaussian Laser: proposal and simulation[J]. Scientific Reports, 8, 8038(2018).

    [87] Zhou N, Liu J, Wang J. Reconfigurable and tunable twisted light laser[J]. Scientific Reports, 8, 11394(2018).

    [88] Qiao Z, Wan Z Y, Xie G Q et al. Multi-vortex laser enabling spatial and temporal encoding[J]. PhotoniX, 1, 13(2020).

    [89] Sun B, Wang A T, Xu L X et al. Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating[J]. Optics Letters, 37, 464-466(2012).

    [90] Chen R S, Wang J H, Zhang X Q et al. High efficiency all-fiber cylindrical vector beam laser using a long-period fiber grating[J]. Optics Letters, 43, 755-758(2018).

    [91] Liu T, Chen S P, Hou J. Selective transverse mode operation of an all-fiber laser with a mode-selective fiber Bragg grating pair[J]. Optics Letters, 41, 5692-5695(2016).

    [92] Wang F, Shi F, Wang T et al. Method of generating femtosecond cylindrical vector beams using broadband mode converter[J]. IEEE Photonics Technology Letters, 29, 747-750(2017).

    [93] Wang T, Shi F, Huang Y P et al. High-order mode direct oscillation of few-mode fiber laser for high-quality cylindrical vector beams[J]. Optics Express, 26, 11850-11858(2018).

    [94] Yang K, Liu Y G, Wang Z et al. All-fiber orbital angular momentum laser generated with titled fiber Bragg grating pair written in few-mode ring-core fiber[C], W3C.4(2019).

    [95] Cui F, Liu J, Wang J et al. All-fiber wavelength-switchable orbital angular momentum (OAM) laser assisted by fiber Bragg grating and Fabry-Perot interferometer directly inscribed in erbium-doped fiber with femtosecond laser[C](2021).

    [96] Li H L, Phillips D B, Wang X Y et al. Orbital angular momentum vertical-cavity surface-emitting lasers[J]. Optica, 2, 547-552(2015).

    [97] Huang C, Zhang C, Xiao S M et al. Ultrafast control of vortex microlasers[J]. Science, 367, 1018-1021(2020).

    [98] Miao P, Zhang Z F, Sun J B et al. Orbital angular momentum microlaser[J]. Science, 353, 464-467(2016).

    [99] Li S M, Nong Z C, Wu X et al. Orbital angular momentum vector modes (de) multiplexer based on multimode micro-ring[J]. Optics Express, 26, 29895-29905(2018).

    [100] Shao Z K, Zhu J B, Zhang Y F et al. On-chip switchable radially and azimuthally polarized vortex beam generation[J]. Optics Letters, 43, 1263-1266(2018).

    [101] Zheng S, Ma X, Chen Q A et al. Concentric microcavities for cylindrical vector beam lasers[J]. Optics Letters, 45, 2211-2214(2020).

    [102] Ma X, Zheng S, Chen Q A et al. High-speed directly modulated cylindrical vector beam lasers[J]. ACS Photonics, 6, 3261-3270(2019).

    Jun Liu, Jian Wang. Research Progress of Vortex Laser[J]. Chinese Journal of Lasers, 2022, 49(12): 1201001
    Download Citation