• Laser & Optoelectronics Progress
  • Vol. 51, Issue 9, 90002 (2014)
Yue Jing1、2、*, Xue Tianfeng1, Li Xia1、2, and Liao Meisong1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop51.090002 Cite this Article Set citation alerts
    Yue Jing, Xue Tianfeng, Li Xia, Liao Meisong. Research Progress of Dehydration Techniques in Mid-Infrared Heavy Metal Oxide Glass[J]. Laser & Optoelectronics Progress, 2014, 51(9): 90002 Copy Citation Text show less
    References

    [1] Angela B Seddon. Potential for using mid- infrared light for non- invasive, early- detection of skin cancers in vivo[C].SPIE, 2013, 8576: 85760V.

    [2] Moinuddin Hassan, Xin Tan, Elissa Welle, et al.. Fiber-optic Fourier transform infrared spectroscopy for remote labelfree sensing of medical device surface contamination[J]. Rev Sci Instrum, 2013, 84(5): 053101-053104.

    [3] Christoph A Hecker, Thomas E L Smith, Beatriz Ribeiro da Luz, et al.. Thermal Infrared Spectroscopy in the Laboratory and Field in Support of Land Surface Remote Sensing[M]. Thermal Infrared Remote Sensing, 2013, 17: 43-67.

    [4] William Green, Bart Kuyken, Xiaoping Liu, et al.. Mid- infrared silicon photonics[C]. Optical Fiber Communication Conference, 2013. OTh4I.7.

    [5] Conghe Song. Optical remote sensing of forest leaf area index and biomass[J]. Progress in Physical Geography, 2013, 37(1): 98-113.

    [6] Marta M Sewilo, B Whitney, M Meade, et al.. The mid- infrared view of star formation regions in the outer galaxy[C].American Astronomical Society Meeting #222, #313.09, 2013.

    [7] J D T Smith, B T Draine, D A Dale, et al.. The mid- infrared spectrum of star- forming galaxies: Global properties of polycyclic aromatic hydrocarbon emission [J]. The Astrophysical Journal, 2007, 656(2): 770-791.

    [8] Li Pingxue, Yang Chun, Yao Yifei, et al.. Research process of 980 nm fiber laser[J]. Laser & Optoelectronics Progress,2013, 50(10): 100001.

    [9] Zhang Bin, Yang Weiqiang, Hou Jing, et al.. All-fiber mid-infrared supercontinuum source from 1.9 μm to 4.3 μm [J].Chinese J Lasers, 2013, 40(11): 1102013.

    [10] Qin Zujun, Zhou Xiaojun, Wu Haocheng. Experimental investigation on multiwavelength Raman fiber laser at 1550 nm [J]. Acta Optica Sinica, 2010, 30(s1): s100207.

    [11] Meisong Liao, Chitrarekha Chaudhari, Guanshi Qin, et al.. Tellurite microstructure fibers with small hexagonal core for supercontinuum generation[J]. Opt Express, 2009, 17(14): 12174-12182.

    [12] F Smektala, C Quemard, L Leneindre, et al.. Chalcogenide glasses with large non- linear refractive indices[J]. J Non-Cryst Solids, 1998, 239(1): 139-142.

    [13] A M Heidt, J H V Price, C Baskiotis, et al.. Mid-infrared ZBLAN fiber supercontinuum source using picosecond diodepumping at 2 μm [J]. Opt Express, 2013, 21(20): 24281-24287.

    [14] P Domachuk, N A Wolchover, M Cronin- Golomb, et al.. Over 4000 nm bandwidth of mid- IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs[J]. Opt Express, 2008, 16(10): 7161-7168.

    [15] M Bernier, V Fortin, N Caron, et al.. Mid- infrared chalcogenide glass Raman fiber laser[J]. Opt Lett, 2013, 38(2): 127-129.

    [16] Xin He, Shanhui Xu, Can Li, et al.. 1.95 μm kHz- linewidth single- frequency fiber laser using self- developed heavily Tm3+-doped germanate glass fiber[J]. Opt Express, 2013, 21(18): 20800-20805.

    [17] Pei-Wen Kuan, Kefeng Li, Guang Zhang, et al.. Compact broadband amplified spontaneous emission in Tm3 +- doped tungsten tellurite glass double-cladding single-mode fiber[J]. Opt Mater Express, 2013, 3(6): 723-728.

    [18] Guoying Zhao, Ying Tian, Huiyan Fan, et al.. Efficient 2.7- μm emission in Er3 +- doped bismuth germanate glass pumped by 980-nm laser diode[J]. Chinese Optics Letters, 2012, 10(9): 091601.

    [19] Shan Guan, Ying Tian, Yanyan Guo, et al.. Spectroscopic properties and energy transfer processes in Er3 +/Nd3 + codoped tellurite glass for 2.7- μm laser materials[J]. Chinese Optics Letters, 2012, 10(7): 071603.

    [20] Fan Xiaokang, Wang Xin, Li Xia, et al.. 2.7 μm fluorescence and energy transfer process in Er3+-doped and Er3+/Pr3+ codoped tellurite glasses[J]. Acta Optica Sinica, 2014, 34(1): 0116001.

    [21] D W Hewak, R S Deol, J Wang, et al.. Low phonon- energy glasses for efficient 1.3 μm optical fibre amplifiers[J].Electron Lett, 1993, 29(2): 237-239.

    [22] Fuxi Gan. Optical properties of fluoride glasses: A review[J]. J Non-Cryst Solids, 1995, 184: 9-20.

    [23] M D O′ Donnell, Kathleen Richardson, R Stolen, et al.. Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: Glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization[J]. J Am Ceram Soc, 2007, 90(5): 1448-1457.

    [24] Benjamin J Eggleton, Barry Luther- Davies, Kathleen Richardson. Chalcogenide photonics[J]. Nat Photonics, 2011, 5(3): 141-148.

    [25] Guillaume Guery. Elaboration and Optimization of Tellurite-Based Materials for Raman Gain Application[D]. Clemson:Clemson University, 2013. 7-39.

    [26] Adrian Carter, Bryce N Samson, Kanishka Tankala, et al.. Damage mechanisms in components for fiber lasers and amplifiers[C]. SPIE, 2004.5647: 561-571.

    [27] N I Min′ko, V V Varavin. Effect of water on the structure and properties of glass (Review)[J]. Glass and Ceramics, 2007,64(3-4): 71-74.

    [28] N Kitamura, K Fukumi, J Nishii, et al.. Effect of hydroxyl impurity on temperature coefficient of refractive index of synthetic silica glasses[J]. J Non-Cryst Solids, 2009, 355(45-47): 2216-2219.

    [29] H A Hoppe, H Lutz, P Morys, et al.. Luminescence in Eu2 +- doped Ba2Si5N8: Fluorescence, thermoluminescence, and upconversion[J]. J Phys Chem Solids, 2000, 61(12): 2001-2006.

    [30] W Fan, L Htein, B H Kim, et al.. Upconversion luminescence in bismuth-doped germano-silicate glass optical fiber[J].Optics & Laser Technology, 2013, 54: 376-379.

    [31] C Perez- Rodriguez, M H Imanieh, L L Martin, et al.. Study of the focusing effect of silica microspheres on the upconversion of Er3+-Yb3+ codoped glass ceramics[J]. J Alloys Compd, 2013, 576: 363-368.

    [32] Hrvoje Gebavi, Stefano Taccheo, Rolindes Balda, et al.. The effect of ZnF2 on the near- infrared luminescence from thulium doped tellurite glasses[J]. J Non-Cryst Solids, 2012, 358(12-13): 1497-1500.

    [33] Sun Jie, Nie Qiuhua, Dai Shixun, et al.. Effect of OH- content on mid- infrared emission properties in Er3 +- doped Ge-Ga-S-CsI glasses[J]. Journal of Inorganic Materials, 2011, 26(8): 836-840.

    [34] Giovanna Navarra, I Iliopoulos, V Militello, et al.. OH- related infrared absorption bands in oxide glasses[J]. J Non-Cryst Solids, 2005, 351(21): 1796-1800.

    [35] Govind Agrawal. Applications of Nonlinear Fiber Optics[M]. Jia Dongfang, Yu Zhenhong (trans.). Beijing: Pulishing House of Electronics Industry, 2002.

    [36] Jiang Chun, Zhang Junzhou, Zhuo Dunshui. Investigation on removal of OH group in BaO- P2O5 and R2O- BaO- P2O5 system phosphate laser glasses by means of RAP method[J]. Chinese J Lasers, 1996, 23(2): 182-186.

    [37] Yang GangFeng, Zhao Sanyin, Deng Zaide, et al.. Removal of OH groups in Er3 +- doped phosphate glasses by reactive atmosphere process[J]. Journal of Inorganic Materials, 2005, 20(5): 1083-1088.

    [38] Shiro Takahashi, S Shibata, Mituho Yasu. Low loss and low OH content soda- lime- silica glass fibre[J]. Electron Lett,1978, 14(5): 151-152.

    [39] Yu Chunlei, Dai Shixun, Zhou Gang, et al.. Influence of OH- on the spectral properties in Er3 +-doped tellurite glass[J].Science in China Ser E Engineering & Materials Science, 2005, 35(9): 924-933.

    [40] P F Wang, W N Li, B Peng, et al.. Effect of dehydration techniques on the fluorescence spectral features and OH absorption of heavy metals containing fluoride tellurite glasses[J]. J Non-Cryst Solids, 2012, 358(4): 788-793.

    [41] H Ebendorff- Heidepriem, K Kuan, M R Oermann, et al.. Extruded tellurite glass and fibers with low OH content for mid-infrared applications[J]. Opt Mater Express, 2012, 2(4): 432-442.

    [42] Ren Guozhong, Chen Baojiu, Yang Yanmin, et al.. Effect of hydroxyl on the up-conversion luminescence of Er3+-doped oxyfluoride tellurite glasses [J]. Chinese Journal of Luminescence, 2006, 27(3): 325-330.

    [43] A X Lin, A Ryasnyanskiy, J Toulouse. Fabrication and characterization of a water- free mid- infrared fluorotellurite glass[J]. Opt Lett, 2011, 36(5): 740-742.

    [44] Xin Jiang, Joris Lousteau, Shaoxiong Shen, et al.. Fluorogermanate glass with reduced content of OH- groups for infrared fiber optics[J]. J Non-Cryst Solids, 2009, 355(37): 2015-2019.

    [45] Wu Jialu, Zhang Junjie, Lai Yangqiong, et al.. Properties of structure and mid- infrared transmission in TeO2- ZnCl2-BaO-NaF glass system[J]. Journal of Inorganic Materials, 2007, 22(2): 277-282.

    [46] Virginie Nazabal, S Todoroki, A Nukui, et al.. Oxyfluoride tellurite glasses doped by erbium: Thermal analysis,structural organization and spectral properties[J]. J Non-Cryst Solids, 2003, 325(1): 85-102.

    [47] Jiang Xiaoping, Yang Zhongmin, Feng Zhouming. OH- removal and its effect on the fluorescent properties of Er3+/Yb3+ co-doped barium gallogermanate glass[J]. Journal of Inorganic Materimals, 2009, 24(2): 243-246.

    [48] A Miguel, M Al-Saleh, J Azkargorta, et al.. Spectroscopic properties of Er3+-doped fluorotellurite glasses[J]. Opt Mater,2013, 35(11): 2039-2044.

    [49] B Zhou, L L Tao, C Y Y Chan, et al.. Intense near-infrared emission of 1.23 μm in erbium-doped low-phonon-energy fluorotellurite glass[J]. Spectroc Acta Pt A-Molec Biomolec Spectr, 2013, 111: 49-53.

    [50] Guihua Liao, Qiuping Chen, Jianjun Xing, et al.. Preparation and characterization of new fluorotellurite glasses for photonics application[J]. J Non-Cryst Solids, 2009, 355(7): 447-452.

    [51] M D O′ Donnell, C A Miller, D Furniss, et al.. Fluorotellurite glasses with improved mid- infrared transmission[J]. JNon-Cryst Solids, 2003, 331(1-3): 48-57.

    [52] Hrvoje Gebavi, Stefano Taccheo, Rolindes Balda, et al.. The effect of ZnF2 on the near- infrared luminescence from thulium doped tellurite glasses[J]. J Non-Cryst Solids, 2012, 358(12): 1497-1500.

    [53] Huan Zhan, Aidong Zhang, Jianli He, et al.. 1.23 μm emission of Er/Pr- doped water- free fluorotellurite glasses[J].Appl Opt, 2013, 52(28): 7002-7006.

    [54] I Savelii, F Desevedavy, J C Jules, et al.. Management of OH absorption in tellurite optical fibers and related supercontinuum generation[J]. Opt Mater, 2013, 35(8): 1595-1599.

    [55] J Massera, A Haldeman, J Jackson, et al.. Processing of tellurite-based glass with low OH content[J]. J Am Ceram Soc,2011, 94(1): 71-77.

    [56] L G Van Uitert, S H Wemple. ZnCl2 glass: A potential ultralow-loss optical fiber material[J]. Appl Phys Lett, 1978, 33(1):57-59.

    [57] Xian Feng, Jindan Shi, Martha Segura, et al.. Halo- tellurite glass fiber with low OH content for 2- 5 μm mid- infrared nonlinear applications[J]. Opt Express, 2013, 21(16): 18949-18954.

    [58] V V Dorofeev, A N Moiseev, M F Churbanov, et al.. High-purity TeO2-WO3-La2O3, Bi2O3 glasses for fiber-optics[J]. Opt Mater, 2011, 33(12): 1911-1915.

    [59] Jiang Xin, J Lousteau, A Jha. Raw materials purification for the development of high performance infrared transmitting germanate glass fibres[J]. Glass Technol, 2009, 50(6): 315-318.

    Yue Jing, Xue Tianfeng, Li Xia, Liao Meisong. Research Progress of Dehydration Techniques in Mid-Infrared Heavy Metal Oxide Glass[J]. Laser & Optoelectronics Progress, 2014, 51(9): 90002
    Download Citation