• Chinese Journal of Quantum Electronics
  • Vol. 41, Issue 6, 901 (2024)
XU Xiaotong, SHI Runhua, KE Weiyang, and YU Hui
Author Affiliations
  • School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
  • show less
    DOI: 10.3969/j.issn.1007-5461.2024.06.007 Cite this Article
    Xiaotong XU, Runhua SHI, Weiyang KE, Hui YU. Decentralized quantum anonymous one⁃vote veto scheme[J]. Chinese Journal of Quantum Electronics, 2024, 41(6): 901 Copy Citation Text show less
    Entanglement swapping of n Bell states (Dotted box represents Bell-state measurement)
    Fig. 1. Entanglement swapping of n Bell states (Dotted box represents Bell-state measurement)
    Decentralized quantum anonymous one-vote veto scheme model
    Fig. 2. Decentralized quantum anonymous one-vote veto scheme model
    Example of decentralized quantum anonymous one-vote veto scheme
    Fig. 3. Example of decentralized quantum anonymous one-vote veto scheme
    Four quantum circuits for Bell state recognition
    Fig. 4. Four quantum circuits for Bell state recognition
    Simulating quantum circuit for QSMD protocol
    Fig. 5. Simulating quantum circuit for QSMD protocol
    Success/failure probability of the voting scheme
    Fig. 6. Success/failure probability of the voting scheme
    符号含义
    xi参与者的隐私输入。
    k整数, 与QSMD协议输出结果的成功概率有关。
    ϕst1,2表示Bell态。其中s,tR{0, 1}。ϕ00ϕ01ϕ10ϕ11分别代表Bell态φ+φ-ψ+ψ-, 1和2代表Bell态中的两个粒子, s,t代表Bell态特性。
    Upq表示Pauli变换。其中p,qR{0,1}。U00, U01, U10, U11分别代表I,σz,σx,iσy变换。下标pq代表Pauli变换特性。
    m所有参与者隐私输入xi = 1的个数。
    δQSMD协议每一轮循环中计算得到错误结果的概率。
    addrIDi区块链生成的账户地址。
    Fid区块链生成的假名。
    Ai投票者Alicei对所有决议的投票信息。
    aiji个投票者对第j项决议的投票信息。
    rij随机整数, 第i个投票者对第j项决议选取的随机数, 用于加密投票信息。
    Cij投票信息执行哈希函数后的结果。
    V所有投票者对决议的最终投票结果。
    Table 1. Symbolic definition
    p[i1]q[i1]p[i1] ˅ q[i1]p[i2]q[i2]p[i2q[i2]
    011011
    101101
    111111
    Table 2. Combination of p[i1]q[i1]=1 and p[i2]q[i2]=1
    NO.p[i1]q[i1]p[i2]q[i2]p[i1]q[i1]p[i2]q[i2]
    1101000
    2100111
    3101101
    4011011
    5010100
    6011110
    7111001
    8110110
    9111100
    Table 3. Possible combination of p[i1]q[i1]  p[i2]q[i2]
    m可能的组合数量错误数量δ1-δ41-δ51-δ6
    0100111
    1300111
    2930.3330.98770.99590.9986
    32760.2220.99760.99950.9999
    481210.2590.99550.99880.9997
    5243600.2470.99630.99910.9998
    67291830.2510.99600.99900.9998
    Table 4. Correctness examples
    方案量子资源量子操作量子测量总通信复杂度
    Ref. [14]d维三粒子纠缠态d维Pauli变换和d维CNOT变换d维计算基O (n)
    Ref. [21]单光子Pauli变换和Hadamard变换单光子测量O (2n)
    Ref. [24]多粒子的GHZ态Pauli变换单光子测量O (n)
    Ref. [25]单光子Pauli变换单光子测量O (kn)
    The proposed schemeBell态Pauli变换Bell态测量O (kn)
    Table 5. Performance comparison (n voters vote for a single event)
    方案可验证性匿名性公平性合法性是否保护投票者隐私无中心
    Ref. [14]××
    Ref. [21]××
    Ref. [24]××
    Ref. [25]××
    The proposed scheme
    Table 6. Security comparison