• Photonics Research
  • Vol. 11, Issue 7, 1217 (2023)
Jiabing Lu1、†, Zesheng Lv1、†, and Hao Jiang1、2、3、*
Author Affiliations
  • 1School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
  • 2State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510006, China
  • 3Guangdong Engineering Technology R&D Center of Compound Semiconductors and Devices, Sun Yat-sen University, Guangzhou 510006, China
  • show less
    DOI: 10.1364/PRJ.489960 Cite this Article Set citation alerts
    Jiabing Lu, Zesheng Lv, Hao Jiang. AlGaN solar-blind phototransistor capable of directly detecting sub-fW signals: self-depletion and photorecovery of full-channel 2DEG enabled by a quasi-pseudomorphic structure[J]. Photonics Research, 2023, 11(7): 1217 Copy Citation Text show less
    References

    [1] C. Xie, X.-T. Lu, X.-W. Tong, Z.-X. Zhang, F.-X. Liang, L. Liang, L.-B. Luo, Y.-C. Wu. Recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors. Adv. Funct. Mater., 29, 1806006(2019).

    [2] Q. Cai, H. You, H. Guo, J. Wang, B. Liu, Z. Xie, D. Chen, H. Lu, Y. Zheng, R. Zhang. Progress on AlGaN-based solar-blind ultraviolet photodetectors and focal plane arrays. Light Sci. Appl., 10, 94(2021).

    [3] U. Varshney, N. Aggarwal, G. Gupta. Current advances in solar-blind photodetection technology: using Ga2O3 and AlGaN. J. Mater. Chem. C, 10, 1573-1593(2022).

    [4] A. Hirano, C. Pernot, M. Iwaya, T. Detchprohm, H. Amano, I. Akasaki. Demonstration of flame detection in room light background by solar-blind AlGaN PIN photodiode. Phys. Status Solidi A, 188, 293-296(2001).

    [5] Y. Wang, Y. Qian, X. Kong. Photon counting based on solar-blind ultraviolet intensified complementary metal-oxide-semiconductor (ICMOS) for corona detection. IEEE Photon. J., 10, 7000919(2018).

    [6] H. Chen, K. Liu, L. Hu, A. A. Al-Ghamdi, X. Fang. New concept ultraviolet photodetectors. Mater. Today, 18, 493-502(2015).

    [7] Y. Kumamoto, K. Fujita, N. I. Smith, S. Kawata. Deep-UV biological imaging by lanthanide ion molecular protection. Biomed. Opt. Express, 7, 158-170(2016).

    [8] J. Ajayan, D. Nirmal. A review of InP/InAlAs/InGaAs based transistors for high frequency applications. Superlattices Microstruct., 86, 1-19(2015).

    [9] J. He, W.-C. Cheng, Q. Wang, K. Cheng, H. Yu, Y. Chai. Recent advances in GaN-based power HEMT devices. Adv. Electron. Mater., 7, 2001045(2021).

    [10] C.-S. Choi, H.-S. Kang, W.-J. Choi, D.-H. Kim, K.-C. Jang, K.-S. Seo. High optical responsivity of InAlAs-InGaAs metamorphic high-electron mobility transistor on GaAs substrate with composite channels. IEEE Photon. Technol. Lett., 15, 846-848(2003).

    [11] S. Kumar, A. S. Pratiyush, S. B. Dolmanan, S. Tripathy, R. Muralidharan, D. N. Nath. UV detector based on InAlN/GaN-on-Si HEMT stack with photo-to-dark current ratio > 107. Appl. Phys. Lett., 111, 251103(2017).

    [12] T. Watanabe, S. A. Boubanga-Tombet, Y. Tanimoto, D. Fateev, V. Popov, D. Coquillat, W. Knap, Y. M. Meziani, Y. Wang, H. Minamide, H. Ito, T. Otsuji. InP- and GaAs-based plasmonic high-electron-mobility transistors for room-temperature ultrahigh-sensitive terahertz sensing and imaging. IEEE Sens. J., 13, 89-99(2013).

    [13] Z. An, J.-C. Chen, T. Ueda, S. Komiyama, K. Hirakawa. Infrared phototransistor using capacitively coupled two-dimensional electron gas layers. Appl. Phys. Lett., 86, 172106(2005).

    [14] L. Li, D. Hosomi, Y. Miyachi, T. Hamada, M. Miyoshi, T. Egawa. High-performance ultraviolet photodetectors based on lattice-matched InAlN/AlGaN heterostructure field-effect transistors gated by transparent ITO films. Appl. Phys. Lett., 111, 102106(2017).

    [15] M. A. Khan, M. S. Shur, Q. Chen, J. N. Kuznia, C. J. Sun. Gated photodetector based on GaN/AlGaN heterostructure field effect transistor. Electron. Lett., 31, 398-400(1995).

    [16] S.-H. Baek, G.-W. Lee, C.-Y. Cho, S.-N. Lee. Gate-controlled amplifiable ultraviolet AlGaN/GaN high-electron-mobility phototransistor. Sci. Rep., 11, 7172(2021).

    [17] T. Kawazu, T. Noda, Y. Sakuma, H. Sakaki. Lateral current generation in n-AlGaAs/GaAs heterojunction channels by Schottky-barrier gate illumination. Appl. Phys. Lett., 106, 022103(2015).

    [18] Z. L. Wang. Progress in piezotronics and piezo-phototronics. Adv. Mater., 24, 4632-4646(2012).

    [19] J. Zúñiga-Pérez, V. Consonni, L. Lymperakis, X. Kong, A. Trampert, S. Fernández-Garrido, O. Brandt, H. Renevier, S. Keller, K. Hestroffer, M. R. Wagner, J. S. Reparaz, F. Akyol, S. Rajan, S. Rennesson, T. Palacios, G. Feuillet. Polarity in GaN and ZnO: theory, measurement, growth, and devices. Appl. Phys. Rev., 3, 041303(2016).

    [20] A. Dal Corso, M. Posternak, R. Resta, A. Baldereschi. Ab initio study of piezoelectricity and spontaneous polarization in ZnO. Phys. Rev. B, 50, 10715-10721(1994).

    [21] S. B. Cho, R. Mishra. Epitaxial engineering of polar ε-Ga2O3 for tunable two-dimensional electron gas at the heterointerface. Appl. Phys. Lett., 112, 162101(2018).

    [22] J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, U. K. Mishra. Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl. Phys. Lett., 77, 250-252(2000).

    [23] H. Tampo, H. Shibata, K. Maejima, A. Yamada, K. Matsubara, P. Fons, S. Kashiwaya, S. Niki, Y. Chiba, T. Wakamatsu, H. Kanie. Polarization-induced two-dimensional electron gases in ZnMgO/ZnO heterostructures. Appl. Phys. Lett., 93, 202104(2008).

    [24] P. Ranga, S. B. Cho, R. Mishra, S. Krishnamoorthy. Highly tunable, polarization-engineered two-dimensional electron gas in ε-AlGaO3/ε-Ga2O3 heterostructures. Appl. Phys. Express, 13, 061009(2020).

    [25] M. Kneissl, T.-Y. Seong, J. Han, H. Amano. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photonics, 13, 233-244(2019).

    [26] D. Li, K. Jiang, X. Sun, C. Guo. AlGaN photonics: recent advances in materials and ultraviolet devices. Adv. Opt. Photon., 10, 43-110(2018).

    [27] A. Kalra, U. U. Muazzam, R. Muralidharan, S. Raghavan, D. N. Nath. The road ahead for ultrawide bandgap solar-blind UV photodetectors. J. Appl. Phys., 131, 150901(2022).

    [28] Y. Yamamoto, A. Yoshikawa, T. Kusafuka, T. Okumura, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki. Realization of high-performance hetero-field-effect-transistor-type ultraviolet photosensors using p-type GaN comprising three-dimensional island crystals. Jpn. J. Appl. Phys., 55, 05FJ07(2016).

    [29] Q. Lyu, H. Jiang, K. M. Lau. High gain and high ultraviolet/visible rejection ratio photodetectors using p-GaN/AlGaN/GaN heterostructures grown on Si. Appl. Phys. Lett., 117, 071101(2020).

    [30] H. Wang, H. You, Y. Xu, X. Sun, Y. Wang, D. Pan, J. Ye, B. Liu, D. Chen, H. Lu, R. Zhang, Y. Zheng. High-responsivity and fast-response ultraviolet phototransistors based on enhanced p-GaN/AlGaN/GaN HEMTs. ACS Photon., 9, 2040-2045(2022).

    [31] T. Narita, A. Wakejima, T. Egawa. Ultraviolet photodetectors using transparent gate AlGaN/GaN high electron mobility transistor on silicon substrate. Jpn. J. Appl. Phys., 52, 01AG06(2013).

    [32] H. Zhang, F. Liang, K. Song, C. Xing, D. Wang, H. Yu, C. Huang, Y. Sun, L. Yang, X. Zhao, H. Sun, S. Long. Demonstration of AlGaN/GaN-based ultraviolet phototransistor with a record high responsivity over 3.6 × 107 A/W. Appl. Phys. Lett., 118, 242105(2021).

    [33] M. Martens, J. Schlegel, P. Vogt, F. Brunner, R. Lossy, J. Würfl, M. Weyers, M. Kneissl. High gain ultraviolet photodetectors based on AlGaN/GaN heterostructures for optical switching. Appl. Phys. Lett., 98, 211114(2011).

    [34] P. F. Satterthwaite, A. S. Yalamarthy, N. A. Scandrette, A. K. M. Newaz, D. G. Senesky. High responsivity, low dark current ultraviolet photodetectors based on two-dimensional electron gas interdigitated transducers. ACS Photon., 5, 4277-4282(2018).

    [35] A. M. Armstrong, B. Klein, A. A. Allerman, E. A. Douglas, A. G. Baca, M. H. Crawford, G. W. Pickrell, C. A. Sanchez. Visible-blind and solar-blind detection induced by defects in AlGaN high electron mobility transistors. J. Appl. Phys., 123, 114502(2018).

    [36] A. Yoshikawa, Y. Yamamoto, T. Murase, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki. High-photosensitivity AlGaN-based UV heterostructure-field-effect-transistor-type photosensors. Jpn. J. Appl. Phys., 55, 05FJ04(2016).

    [37] K. Wang, X. Qiu, Z. Lv, Z. Song, H. Jiang. Ultrahigh detectivity, high-speed and low-dark current AlGaN solar-blind heterojunction field-effect phototransistors realized using dual-float-photogating effect. Photon. Res., 10, 111-119(2021).

    [38] Z. Li, P. Shao, Y. Wu, G. Shi, T. Tao, Z. Xie, P. Chen, Y. Zhou, X. Xiu, D. Chen, B. Liu, K. Wang, Y. Zheng, R. Zhang, T. Lin, L. Wang, H. Hirayama. Plasma assisted molecular beam epitaxy growth mechanism of AlGaN epilayers and strain relaxation on AlN templates. Jpn. J. Appl. Phys., 60, 075504(2021).

    [39] S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco. Interpretation of double X-ray diffraction peaks from InGaN layers. Appl. Phys. Lett., 79, 1432-1434(2001).

    [40] O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, L. F. Eastman. Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures. J. Phys. Condens. Matter, 14, 3399-3434(2002).

    [41] B. K. Ridley, O. Ambacher, L. F. Eastman. The polarization-induced electron gas in a heterostructure. Semicond. Sci. Technol., 15, 270-271(2000).

    [42] V. Fiorentini, F. Bernardini, O. Ambacher. Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures. Appl. Phys. Lett., 80, 1204-1206(2002).

    [43] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, J. Hilsenbeck. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys., 85, 3222-3233(1999).

    [44] V. V. Kuryatkov, H. Temkin, J. C. Campbell, R. D. Dupuis. Low-noise photodetectors based on heterojunctions of AlGaN-GaN. Appl. Phys. Lett., 78, 3340-3342(2001).

    [45] Z. H. Zaidi, P. A. Houston. Highly sensitive UV detection mechanism in AlGaN/GaN HEMTs. IEEE Trans. Electron Devices, 60, 2776-2781(2013).

    [46] D. A. Neamen. Semiconductor Physics and Devices: Basic Principles(2003).

    [47] Y. Taniyasu, M. Kasu. Polarization property of deep-ultraviolet light emission from C-plane AlN/GaN short-period superlattices. Appl. Phys. Lett., 99, 251112(2011).

    [48] K. Takeuchi, S. Adachi, K. Ohtsuka. Optical properties of AlxGa1−xN alloy. J. Appl. Phys., 107, 023306(2010).

    Jiabing Lu, Zesheng Lv, Hao Jiang. AlGaN solar-blind phototransistor capable of directly detecting sub-fW signals: self-depletion and photorecovery of full-channel 2DEG enabled by a quasi-pseudomorphic structure[J]. Photonics Research, 2023, 11(7): 1217
    Download Citation