• Chinese Optics Letters
  • Vol. 22, Issue 2, 020604 (2024)
Jiajia Zhao1, Guohui Chen1, Xuan Bi1, Wangyang Cai1..., Lei Yue1 and Ming Tang2,*|Show fewer author(s)
Author Affiliations
  • 1School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China
  • 2Wuhan National Laboratory for Optoelectronics (WNLO) and National Engineering Laboratory for Next Generation Internet Access System, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.3788/COL202422.020604 Cite this Article Set citation alerts
    Jiajia Zhao, Guohui Chen, Xuan Bi, Wangyang Cai, Lei Yue, Ming Tang, "Fast mode decomposition for few-mode fiber based on lightweight neural network," Chin. Opt. Lett. 22, 020604 (2024) Copy Citation Text show less
    References

    [1] X. Chen, T. Yao, L. Huang. Functional fibers and functional fiber-based components for high-power lasers. Adv. Fiber Mater., 5, 59(2023).

    [2] D. J. Richardson, J. M. Fini, L. E. Nelson. Space-division multiplexing in optical fibres. Nat. Photonics, 7, 354(2013).

    [3] J. Du, W. Shen, J. Liu et al. Mode division multiplexing: from photonic integration to optical fiber transmission [Invited]. Chin. Opt. Lett., 19, 091301(2021).

    [4] L. G. Wright, D. N. Christodoulides, F. W. Wise. Spatiotemporal mode-locking in multimode fiber lasers. Science, 358, 94(2017).

    [5] S. Chen, W. Hu, Y. Xu et al. Mode-locked pulse generation from an all-FMF ring laser cavity. Chin. Opt. Lett., 17, 121405(2019).

    [6] S. Bai, Y. Lu, Z. Zhang. Mode field switching in narrow linewidth mode-locked fiber laser. Chin. Opt. Lett., 20, 020602(2022).

    [7] K. Krupa, A. Tonello, B. M. Shalaby et al. Spatial beam self-cleaning in multimode fibres. Nat. Photonics, 11, 237(2017).

    [8] J. Carpenter, B. J. Eggleton, J. Schröder. 110 × 110 optical mode transfer matrix inversion. Opt. Express, 22, 96(2014).

    [9] L. Huang, J. Leng, P. Zhou et al. Adaptive mode control of a few-mode fiber by real-time mode decomposition. Opt. Express, 23, 28082(2015).

    [10] D. Flamm, K.-C. Hou, P. Gelszinnis et al. Modal characterization of fiber-to-fiber coupling processes. Opt. Lett., 38, 2128(2013).

    [11] C. Schulze, A. Lorenz, D. Flamm et al. Mode resolved bend loss in few-mode optical fibers. Opt. Express, 21, 3170(2013).

    [12] D. Flamm, C. Schulze, R. Brüning et al. Fast M2 measurement for fiber beams based on modal analysis. Appl. Opt., 51, 987(2012).

    [13] J. Demas, S. Ramachandran. Sub-second mode measurement of fibers using C2 imaging. Opt. Express, 22, 23043(2014).

    [14] J. W. Nicholson, A. D. Yablon, S. Ramachandran et al. Spatially and spectrally resolved imaging of modal content in large-mode-area fibers. Opt. Express, 16, 7233(2008).

    [15] N. Andermahr, T. Theeg, C. Fallnich. Novel approach for polarization-sensitive measurements of transverse modes in few-mode optical fibers. Appl. Phys. B, 91, 353(2008).

    [16] Y. Z. Ma, Y. Sych, G. Onishchukov et al. Fiber-modes and fiber-anisotropy characterization using low-coherence interferometry. Appl. Phys. B, 96, 345(2009).

    [17] T. Kaiser, D. Flamm, S. Schröter et al. Complete modal decomposition for optical fibers using CGH-based correlation filters. Opt. Express, 17, 9347(2009).

    [18] R. Brüning, P. Gelszinnis, C. Schulze et al. Comparative analysis of numerical methods for the mode analysis of laser beams. Appl. Opt., 52, 7769(2013).

    [19] L. Huang, S. Guo, J. Leng et al. Real-time mode decomposition for few-mode fiber based on numerical method. Opt. Express, 23, 4620(2015).

    [20] F. Stutzki, H.-J. Otto, F. Jansen et al. High-speed modal decomposition of mode instabilities in high-power fiber lasers. Opt. Lett., 36, 4572(2011).

    [21] H. Lü, P. Zhou, X. Wang et al. Fast and accurate modal decomposition of multimode fiber based on stochastic parallel gradient descent algorithm. Appl. Opt., 52, 2905(2013).

    [22] L. Li, J. Leng, P. Zhou et al. Multimode fiber modal decomposition based on hybrid genetic global optimization algorithm. Opt. Express, 25, 19680(2017).

    [23] W. Yan, X. Xu, J. Wang. Modal decomposition for few mode fibers using the fractional Fourier system. Opt. Express, 27, 13871(2019).

    [24] E. S. Manuylovich, V. V. Dvoyrin, S. K. Turitsyn. Fast mode decomposition in few-mode fibers. Nat. Commun., 11, 5507(2020).

    [25] Y. An, L. Huang, J. Li et al. Learning to decompose the modes in few-mode fibers with deep convolutional neural network. Opt. Express, 27, 10127(2019).

    [26] X. Fan, F. Ren, Y. Xie et al. Mitigating ambiguity by deep-learning-based modal decomposition method. Opt. Commun., 471, 125845(2020).

    [27] Z.-H. Zhu, Y.-Y. Xiao, R.-M. Yao. CNN-based few-mode fiber modal decomposition method using digital holography. Appl. Opt., 60, 7400(2021).

    [28] S. Rothe, Q. Zhang, N. Koukourakis et al. Intensity-only mode decomposition on multimode fibers using a densely connected convolutional network. J. Lightwave Technol., 39, 1672(2021).

    [29] H. Gao, Z. Chen, Y.-X. Zhang et al. Rapid mode decomposition of few-mode fiber by artificial neural network. J. Lightwave Technol., 39, 6294(2021).

    [30] Z. Tian, L. Pei, J. Wang et al. High-precision mode decomposition for few-mode fibers based on multi-task deep learning. J. Lightwave Technol., 40, 7711(2022).

    [31] F. Chollet. Xception: deep learning with depthwise separable convolutions. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1800(2017).

    [32] A. Howard, M. Sandler, B. Chen et al. Searching for MobileNetV3. IEEE/CVF International Conference on Computer Vision (ICCV), 1314(2019).

    [33] A. W. Snyder, J. D. Love. Optical Waveguide Theory(1983).

    [34] A. G. Howard, M. Zhu, B. Chen et al. Mobilenets: efficient convolutional neural networks for mobile vision applications(2017).

    [35] P. Ramachandran, B. Zoph, Q. V. Le. Searching for activation functions(2017).

    [36] B. Yan, J. Zhang, M. Wang et al. Degenerated mode decomposition with convolutional neural network for few-mode fibers. Opt. Laser Technol., 154, 108287(2022).

    [37] Y. An, L. Huang, J. Li et al. Deep learning-based real-time mode decomposition for multimode fibers. IEEE J. Sel. Top. Quantum Electron., 26, 4400806(2020).

    Jiajia Zhao, Guohui Chen, Xuan Bi, Wangyang Cai, Lei Yue, Ming Tang, "Fast mode decomposition for few-mode fiber based on lightweight neural network," Chin. Opt. Lett. 22, 020604 (2024)
    Download Citation