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In this paper, we present a fast mode decomposition method for few-mode fibers, utilizing a lightweight neural network
called MobileNetV3-Light. This method can quickly and accurately predict the amplitude and phase information of different
modes, enabling us to fully characterize the optical field without the need for expensive experimental equipment. We train
the MobileNetV3-Light using simulated near-field optical field maps, and evaluate its performance using both simulated and
reconstructed near-field optical field maps. To validate the effectiveness of this method, we conduct mode decomposition
experiments on a few-mode fiber supporting six linear polarization (LP) modes (LP01, LP11e, LP11o, LP21e, LP21o, LP02). The
results demonstrate a remarkable average correlation of 0.9995 between our simulated and reconstructed near-field light-
field maps. And the mode decomposition speed is about 6 ms per frame, indicating its powerful real-time processing
capability. In addition, the proposed network model is compact, with a size of only 6.5 MB, making it well suited for deploy-
ment on portable mobile devices.
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1. Introduction

In recent years, few-mode fibers (FMFs) have received increas-
ing attention due to their potential applications in high-power
fiber lasers[1], space-division multiplexing transmission[2,3],
and imaging. Moreover, FMFs are regarded as ideal platforms
for the study of spatiotemporal mode-locking mechanisms[4–6]

and Kurr nonlinear beam cleaning[7]. However, the mode-cou-
pling phenomenon in FMFs is inevitable, which significantly
impacts their performance. Therefore, it is crucial to understand
the mode properties of FMFs to suppress higher-order mode
generation or optimize their design. The mode-decomposition
(MD) technique is a fundamental measurement method that
allows for the decomposition of the amplitude and phase infor-
mation of each eigenmode in FMFs. It plays a critical role in
studying mode properties and transmission characteristics in
FMFs. Currently, MD techniques are commonly used for meas-
uring fiber mode transfer matrices[8], implementing adaptive
mode control[9], analyzing fiber mode coupling[10], studying
fiber bending losses[11], and measuring beam quality[12].
Early MD methods were primarily based on experimental

techniques[13–17], where the complete distribution of the optical

field was directly measured by using sophisticated experimental
devices. However, these methods suffer from high equipment
costs, high accuracy requirements, complex experimental
procedures, heavy workloads, and vulnerability to environmen-
tal influences. Subsequently, numerically based MD tech-
niques[18–22] were proposed, which effectively reduce the cost
and equipment requirements and only require simple experi-
ments. However, these methods are susceptible to problems
such as initial value sensitivity, convergence to local minima,
high computational effort, and long convergence time during
a large number of iterations. To solve these problems, some non-
iterative numerical decomposition methods, such as fractional-
level Fourier systems[23] and matrix-inversion methods[24], have
emerged, which avoid the above problems and show excellent
performance.
Recently, neural network-based MD methods have shown

feasibility and are emerging as a significant research direction.
An et al. achieved the first high-precision real-time MD of five
modes using VGG-16 convolutional neural networks in
2019[25]. Subsequently, Fan et al. improved the convolutional
neural network in 2020 by adding additional loss functions
associated with near-field and far-field spot maps to achieve
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high-precision MD in the case of six-mode superposition[26].
Zhu et al. successfully achieved high-precision MD with six
modes using a ResNet-18 convolutional neural network in
2021[27]. Rothe et al. utilized Dense-Net convolutional neural
network with up to 121 layers to achieve high-precision MD
with eight modes superimposed[28]. Also artificially designed
neural network-based methods[29] and multitask deep-learning
methods[30] to achieveMD have been proposed successively and
have shown better performance. However, all of the abovemeth-
ods use traditional convolutional neural networks for MD,
which have problems such as long training time, high computer
equipment requirements, and excessive computing resources
consumption. In addition, the large number of parameters in
traditional convolutional neural network models makes them
unsuitable for deployment on portable devices, like popular
Android smartphones. To address this challenge, lightweight
convolutional neural networks have been proposed and shown
promising results in image classification[31]. Among them,
Google proposed the lightweight neural network model
MobileNetV3 in 2019[32]. MobileNetV3 employs the neural
architecture search (NAS) parametric search method and
redesigns the time-consuming layer structure and activation
function. This greatly reduced the number of training parame-
ters while maintaining high accuracy, leading to significantly
reduced training time for the entire network. Overall,
MobileNetV3 makes the whole image classification network
more lightweight and efficient.
In this paper, we propose a fast MD method based on the

improvement of MobileNetV3. The proposed algorithm uses
depth-separable convolution instead of conventional convolu-
tion, redesigns the activation function, and reduces the repetitive
layer structure without any pretraining process. The method can
quickly and accurately predict the mode weights of the eigenm-
odes and the phase differences between the fundamental and
higher-order modes. Simulation test results show that the aver-
age mode weight error of modes is less than 0.56%, the average
relative phase error is less than 0.85%, and the average correla-
tion between simulated and reconstructed near-field optical field
maps is as high as 0.9995 under the condition of FMFs support-
ing six LP modes (LP01, LP11e, LP11o, LP21e, LP21o, LP02).
The MD of this method speed is about 6 ms per frame, the
real-time processing is very strong, and the network model size
is merely 6.5 MB, which has the advantages of fast decomposi-
tion speed, low experimental equipment requirement, and easy
deployment compared with other deep-learning methods. Most
importantly, this lightweight model facilitates the reduction of
the need for storage devices and computational resources and
is easy to deploy on portable devices such as cell phones and
sensors.

2. Implementation Method

The propagation field within the FMFs can be expressed as a lin-
ear superposition of several eigenmodes, as shown in Eq. (1)[33],

U�x, y� =
Xnmax

n=1

Aneiθnψn�x, y�,
Xnmax

n=1

A2
n = 1, θn ∈ �−π, π�,

(1)

where ψn�x, y� denotes the nth eigenmode of the propagation
field in the fiber, A2

n is the nth mode weight, and θn is the relative
phase of the mode. nmax denotes the maximum number of
modes supported in the fiber. Since the refractive index differ-
ence between the core and cladding of an FMF is small enough to
qualify for the weak-conductance approximation, in this paper
we use the LP mode to uniformly describe each eigenmode[33].
TheMD technique is ameasurement technique to obtainA2

n and
θn from near-field optical field intensity images.
Figure 1 illustrates the entire MD process using

MobileNetV3_Light. First, the eigenmode is calculated based
on the known fiber structure parameters, and the mode weights
along with relative phase coefficients are randomly generated.
Then, the near-field optical field image is generated by eigen-
mode superposition theory simulation. It is worth noting that,
although the phase sign cannot be determined from the near-
field optical field image alone, it is feasible to use only the near-
field optical field image for MD in fiber laser studies, where in
most cases only themode ratios of the individual eigenmodes are
of interest[25]. During the training phase of the neural network,
we take the near-field light-field image as input and process the
generated mode weights and relative phase coefficients as label
vectors. The label vector consists of n mode weights and n − 1
relative phases, set into a set of 2n − 1 column vectors, where n
denotes the number of supported eigenmodes in the FMF. The
n mode weights are denoted as fA2

i ∣ i = 1, 2, : : : , ng, A2
i is

randomly generated between 0 and 1; and the n − 1 relative
phases between higher-order modes and fundamental modes
are denoted as fθiji = 1, 2, : : : , n − 1g. θi is randomly generated
between −π and π. Since the relative phase is ambiguous[25],
meaning that a near-field optical field image may have multiple
phase labels, directly using the relative phase as the label vector
might cause the neural network to be unable to converge.
To address this issue, we use the cosine of the relative phase
instead of the true value of the label vector and linearly scale
the range of the cosine from �−1, 1� to the range of [0, 1]. The
preprocessed near-field light-field images are then passed
through the MobileNetV3_Light neural network model, which
includes convolutional layers, pooling layers, fully connected
layers, and activation functions, ultimately producing the
prediction vector as the output. Finally, the mean square

Fig. 1. Pattern decomposition based on MobileNetV3_Light neural network.
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error MSE between the prediction vector and the label vec-
tor is used as the network loss function[25], as shown in
Eq. (2),

MSE =
1
K
·
XK
i=1

X2n−1
j=1

�x�i�o �j� − x�i�l �j��2: �2�

Here, K represents the number of training samples, xo repre-
sents the prediction vector, and xl represents the label vector.
The parameters of the neural network are updated using a back-
propagation neural network (BPNN) until the network con-
verges, resulting in a network model capable of directly
predicting themode information. Subsequently, with the trained
MobileNetV3_Light model, the mode weights and phase infor-
mation of the FMF can be directly predicted from the simulated
near-field optical field intensity image, and the complete mode
coefficients can be obtained by selecting the appropriate phase
combinations without any iterative process.

3. Neural Network Model Design

Convolutional neural network models face twomajor challenges
in applications: one is the storage issue, as hundreds of net-
work layers contain a large number of parameters, leading to
high storage requirements for the device. The other is the speed
issue, where prediction is usually required to be done within
milliseconds in order to meet the practical standards of mobile
applications. To address these performance issues, model com-
pression is a common solution. It involves retraining an already
trained model to reduce the number of parameters in the
network, thus solving the storage problem. Unlike dealing
with already trained models, lightweight models are designed
using a more efficient “network computation method” (mainly
used in convolutional methods) to reduce network parameters
without affecting performance. Representative examples in
this regard include Squeeze-Net, Mobile-Net, Shuffle-Net, and
Xception.
In this paper, MobileNetV3 is used as the initial model, and

MobileNetV3_Light is obtained by fine-tuning it. The perfor-
mance improvement of this model can be mainly attributed
to the use of depth-separable convolution instead of the tradi-
tional convolutional computation. As described in the litera-
ture[34], the depth-separable convolution decomposes the
traditional convolution into two parts: a depth-wise convolution
and a 1 × 1 convolution. As shown in Fig. 2, Fig. 2(a) illustrates
the conventional convolution, while Figs. 2(b) and 2(c) re-
present the depth convolution and the 1 × 1 convolution,
respectively.
The computation effort of the conventional convolution is

HWNK2 M, whereas the total computation of the depth-
separable convolution can be calculated by Eq. (3)[34],

HWNK2�Depth Wise� �HWNM�Point Wise�
= HWN�K2 �M�,
Depth Wise� Point Wise

Conv
=

1
M

� 1
K2: �3�

It can be seen that the number of parameters in the light-
weight neural network model is 2.5 million and the number
of parameters in the traditional networkmodel is 21.875million.
Deep-separable convolution requires only 1/8 to 1/9 of the com-
putational effort of traditional convolution. It achieves this by
decomposing the traditional convolutional factorization into a
deep convolution and a point-by-point convolution, which sig-
nificantly reduces the computational effort of the neural net-
work model.
In addition, MobileNetV3 further reduces the computational

cost of the model by employing the hard-sigmoid function
(instead of the sigmoid function) and by simplifying the repeti-
tive folding operation. Experiments in the literature[35] demon-
strate that hard-sigmoid functions play almost the same role as
sigmoid functions in mobile devices, but are typically less com-
putationally intensive. The activation functions used in this
paper include Hard-Swish and ReLU functions, whose expres-
sions are shown in Eqs. (4) and (5), respectively,

Hard-Swish�x� = x
ReLU6�x� 3�

6
, (4)

ReLU�x� =max�x, 0�: (5)

The ReLU6�x� =min�max�x, 0�, 6� and ReLU6 functions
output zero for negative values and values greater than six,
and output itself for other values; the ReLU function outputs
zero for negative values and outputs itself for other values.
The overall architecture of the MobileNetV3_Light network

Fig. 2. Traditional convolution and depth-separable convolution.
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designed in this paper is shown in Fig. 3, which consists of three
modules.
The first module consists of a traditional convolutional layer,

followed by the use of a Hard-Swish activation function. The
secondmodule comprises nineMobileNetV3 blocks, each struc-
tured as depicted in Fig. 4[32]. Within each MobileNetV3 block,
the input feature matrix is first up-dimensioned by a 1 × 1 con-
volutional layer, followed by a 3 × 3 depth-wise convolutional
layer. Each convolutional operation is then followed by a batch
normalization (BN) layer and an activation function (NL).
Additionally, a self-attention mechanism (SE) module is
applied, where the average pooling of the number of channels
of the feature matrix is obtained, and an output vector is derived
through two fully connected layers. Here the first fully con-
nected layer comprises a number of nodes equal to one-quarter
of the number of feature matrix channels, followed by a ReLU
activation function. The second fully connected layer consists of
a number of nodes equal to the number of feature matrix chan-
nels and employs a hard-sigmoid activation function.
Finally, a 1 × 1 convolutional layer is utilized to reduce the

dimensionality, resulting in the final output feature matrix. It
is important to note that the shortcut operation is executed only
when the step of depth-wise convolution is equal to 1 and the
number of channels of the input feature matrix matches the
number of channels of the output feature matrix. In this case,
the input and output feature matrices are directly summed in
the same dimension. The third module consists of a 7 × 7 aver-
age pooling layer and three 1 × 1 convolution layers.
The detailed parameters of the whole network model struc-

ture are shown in Table 1. The “Input” column denotes the size
of the input feature matrix. The “Operator” column represents
various operations, where “Conv2d” indicates the convolutional

layer, “Bneck, 3 × 3” indicates the size of depth-wise convolution
in MobileNetV3 block as 3 × 3, “AvgPool, 7 × 7” means the
average pooling layer size of 7 × 7, and “NBN” means no BN
layer is used. The “exp size” column represents the size of the
first up-dimensioned convolutional layer. The “#out” column
shows the size of the output feature matrix. The “SE” column
signifies whether the self-attention mechanism is employed,
with “

p
” indicating its usage. The “NL” column represents dif-

ferent activation functions, where “HS” is the Hard-Swish acti-
vation function, and “RE” is the ReLU activation function. In
addition, the symbol “s” is the step size of the convolution or
pooling operation, while “K” represents the number of output
vectors. For instance, in the case ofN modes, the decomposition
corresponds to a number of output vectors K equal to 2N − 1.
Compared with the initial model, the number of convolution
kernels in the first convolution layer is reduced from 16 to 8,
and the number of repeated MobileNetV3 blocks is reduced
from 11 to 9, which further improves the efficiency of ourmodel.

4. Experimental Results and Discussion

All experiments reported in this paper were run on a desktop
computer with an AMD R7 5800X CPU and an NVIDIA
GeForce RTX 3070 GPU. First, a data set comprising 100,000
near-field light-field maps with a resolution of 224 × 224 is ran-
domly generated through MATLAB simulation. The data set is
then divided into training and validation sets in an 8:2 ratio.

Fig. 3. MobileNetV3_Light network structure.

Fig. 4. MobileNetV3 block network structure diagram.

Table 1. Detailed Parameter Settings of MobileNetV3_Light Network Model
Structure.

Input Operator Exp size #out SE NL s

2242 × 3 Conv2d – 8 – HS 2

1122 × 8 Bneck, 3 × 3 16 16
p

RE 2

562 × 16 Bneck, 3 × 3 72 24 – RE 2

282 × 24 Bneck, 3 × 3 88 24 – RE 1

282 × 24 Bneck, 5 × 5 96 40
p

HS 2

142 × 40 Bneck, 5 × 5 240 40
p

HS 1

142 × 40 Bneck, 5 × 5 120 48
p

HS 1

142 × 48 Bneck, 5 × 5 144 48
p

HS 1

142 × 112 Bneck, 5 × 5 288 96
p

HS 2

72 × 96 Bneck, 5 × 5 576 96
p

HS 1

72 × 96 Conv2d, 1 × 1 – 576
p

HS 1

72 × 576 AvgPool, 7 × 7 – – – – 1

12 × 576 Conv2d, 1 × 1, NBN – 1024 – HS 1

12 × 1024 Conv2d, 1 × 1, NBN – K – – 1
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For training, 150 epochs are utilized, with a batch size of 64 for
key training parameters. The hyperparameter learning rate is set
to 0.01 for the initial 20 epochs and reduced to 0.0001 for the
subsequent epochs, with the aim of accelerating the training
process. To prevent overfitting, validation checks are used as
the termination condition in this work, and the number of val-
idation checks is set to six. Using the validation check as the ter-
mination condition means that during the training process, the
computation will stop if the error curve of the validation set sam-
ples no longer decreases in six consecutive iterations. The net-
work decreases rapidly to a relatively good level after the first 15
training periods and stops training after 100 training periods.
The total training time is about 267.5 min. Finally, we combine
simulated and reconstructed near-field light-field maps to test
the performance of the entire network.
The flow of the whole test is shown in Fig. 5.

MobileNetV3_Light can directly predict the weight coefficients

of the obtained patterns A2
i , fA2

i ji = 1, 2, : : : , ng, and the cosine
coefficients of the relative phases Li, fLiji = 1, 2, : : : , n − 1g,
where it is also necessary to find all possible matching phase
combinations θi, fθi ∣ i = 1, 2, : : : , n − 1g by the processed
cosine coefficients and finally to evaluate the correlation be-
tween the simulated and reconstructed near-field light-field
maps by the evaluation function f �k�. The expression is shown
in Eq. (6)[24],

f �k� =
P

x,y�I0�x, y� − Ī0��Ik�x, y� − Īk�����������������������������������������������������������������������������������P
x,y �I0�x, y� − Ī0�2

P
x,y �Ik�x, y� − Īk�2

q , (6)

where I0 is the simulated near-field light-field intensity distribu-
tion, Ik is the reconstructed near-field light-field intensity distri-
bution, and Ī0 and Īk are the average values of I0 and Ik,
respectively. A larger f �k� indicates a higher correlation between
the simulated and reconstructed near-field intensity distribu-
tions, and the closer the evaluation function is to 1, the closer
the simulated and reconstructed near-field light-field images
are. In this experiment, ΔP and Δθ defined in Eqs. (7) and
(8) are used to numerically describe the mode weights and rel-
ative phase errors of the simulated and reconstructed near-field
optical field intensities[29],

Δpi = jA2
i − A2

i j, i = 1, 2, : : : , n, (7)

Δθi = jjθij − jθijj, i = 1, 2, : : : , n − 1, (8)

where A2
i and θi represent the simulated near-field optical field

intensity mode weights and the relative phases of the higher-

order modes to the fundamental mode, and A2
i and θi represent

the predicted mode weights and the relative phases of the
higher-order modes to the fundamental mode. The closer the
error is to 0, the more accurate the predicted mode weights
and relative phases are. Finally, our method is evaluated visually
by comparing the simulated and reconstructed near-field optical
field images and showing the residuals between them. In addi-
tion, we evaluate the time spent for the whole decomposition
process and the size of the number of parameters of the network
model; the shorter the prediction time, the higher the perfor-
mance of the MD. The number of parameters affects the
memory footprint on the one hand and the size of the package
directly on the other. If the package is too large, it will make the
model deployment impossible.
We have evaluated the performance simulation at 1073 nm

using a step refractive index fiber with a core radius of
11.8 μm and NA of 0.064 as an example. The normalized fre-
quency of this fiber is about 4.43, so it can support six modes,
which can be sequentially arranged as LP01, LP11e, LP11o,
LP21e, LP21o, and LP02 modes. Due to the simplicity of the
modes[30], there are three possible cases of modes propagated
by this fiber, which are the first three, five, and six modes. As
the number of modes increases, the combination of eigenmodes
becomes more complex and the number of near-field optical
field images with different mode coefficients increases[25–30].
Therefore, under the condition of supporting six modes with
FMF, we generated 1000 random near-field light-field images
for testing the MobileNetV3_Light network model for different
training periods.
We then calculated the average correlation between the simu-

lated and reconstructed near-field light-field intensities for the
test samples after each period of training; the results are shown
in Fig. 6. It can be found that the correlation only increases rap-
idly to above 0.9910 within the first 15 periods, and then starts to

Fig. 5. Test flow chart. Fig. 6. Average correlations across training periods for the six model cases.
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converge by the 50th period. We chose to stop training at 100
training periods, when the correlation approaches 0.9995. In
addition, we tested the network after 100 training periods, com-
paring the pattern weights and the relative phase errors. The
average errors of the individual pattern weights and relative
phases are shown in Tables 2 and 3. It can be seen that the aver-
age mode weight error is less than 0.56%, and the average rela-
tive phase error is less than 0.85% for all six modes. Compared
with the literature[25–29], the scheme proposed in this paper can
achieve similar decomposition accuracy. It can be concluded
that the trained MobileNetV3_Light can learn the relationship
between pattern coefficients and near-field light-field intensity
images. It should be emphasized that the mode weight errors
and relative phase errors described in this experiment are the
average of 1000 samples.
To visually evaluate the method, simulated near-field light-

field maps, reconstructed near-field light-field maps, residual
maps, and their correlation are collected formultiple sets of sam-
ples in Fig. 7. It can be found that the reconstructed near-field
light-field maps and the simulated near-field light-field maps are
highly similar with very small residuals, which further confirms
the accuracy and effectiveness of the method described in
this work.
In order to measure the size of the memory footprint of the

devices required for the MD technique and the speed of decom-
position, we computed the time taken by the network to perform
each stage of MD using GPUs and the size of the number of
parameters modeled by the network, under the condition of
1000 test legends. The time spent in each stage is reported in

detail in Table 4. In Table 4, T1 indicates the training time of
the MobileNetV3_Light network, T2 indicates the time of image
preprocessing, T3 indicates the calculation time of pattern
weights and relative phases, and T4 indicates the time of picking
the most suitable phase combination. From Table 4, we can find
that it takes 6.27 s to complete MD for 1000 samples using the
trained MobileNetV3_Light neural network, of which 2.41 s is
required for image preprocessing, and 3.86 s is required for
modal weight and relative phase calculation. Note that a single
sample takes only 6.27 ms to perform MD. We can see that a
near-field optical field image takes only about 6 ms to complete
MD, which is much lower than that of the method in the liter-
ature[25] that uses the VGG-16 model for MD, which demon-
strates that the method has high performance. In addition,
such high decomposition efficiency makes the method also
capable of potential real-time MD. In Table 5, the sizes of some
of the proposed neural network models are compared, where
“Parameters” is the number of parameters. It can be seen from
Table 5 that the number of parameters of our proposed
MobileNetV3_Light network model is only 2.5 million and
the size of the network model is 6.5 MB. Compared to the neural
network model size of some of the proposed pattern decompo-
sitions[36,37], the decomposition scheme proposed in this paper
has obvious advantages. Currently proposed neural network
methods for MD generally have the problem of large model size,
which we avoid better by designing a lightweight neural net-
work. This gives our model a greater advantage on a portable
mobile device.
To access the feasibility of our method in a case with more

modes, we extended our investigations to train network models
for 8 and 10modes. As the number of modes increases, the com-
bination of eigenmodes becomes more complex and the number
of similar near-field light-field images with different mode coef-
ficients increases. Therefore, to ensure the accuracy of decom-
position, we optimized the network by stacking the number
of MobileNetV3 blocks in the MobileNetV3_Light network in
order to improve the ability of network learning. Furthermore,
we augmented the training data set size and improved the res-
olution of the near-field light-field images, which benefited the
fitting process.
In our work, the number of MobileNetV3 blocks correspond-

ing to 8 and 10 patterns was increased to 11 and 15, respectively.
The training data set size was extended to 150,000 and 200,000
images, respectively, with the mean resolution of images
increased to 256 × 256. Consequently, the training time also
increased to 314.6 and 426.8 min, respectively. The number
of parameters in the model correspondingly increased to
2.75 million and 3.22 million. It can be found that even under
the condition of an increased number of patterns, our method

Table 2. Average Error of the Six Model Weights.

Δp1 Δp2 Δp3 Δp4 Δp5 Δp6

Average weights error 0.47% 0.48% 0.42% 0.48% 0.53% 0.55%

Table 3. Average Error of the Relative Phase of the Six Modes.

Δθ1 Δθ2 Δθ3 Δθ4 Δθ5

Average weights error 0.47% 0.48% 0.42% 0.48% 0.53%

Fig. 7. Simulated near-field light-field map, reconstructed near-field light-
field map, residual images, and their correlation.

Table 4. Time Spent in Different Phases of Testing.

T1 T2 T3 T4

Predicting model weight and phase 267.5 min 2.41 s 3.86 s 36.24 s
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still shows great advantages compared to models such as
VGG-16.
Figure 8 depicts the relationship between the number of sup-

ported modes and the correlation. It can be found that the cor-
relation decreases as the number of supported modes increases,
reaching 0.98 when there are 10 modes. The decomposition
scheme based on MobileNetV3_Light does not show an advan-
tage in supporting more modes. The reason may be that the
expansion of modes will lead to an increase in the number of
similar near-field light-field maps with different mode coeffi-
cients, which will introduce ambiguities. A promising way to
reduce this error is to introduce far-field light-field images.
Far-field light-field images corresponding to similar near-field
light-field images with different mode coefficients exhibit sig-
nificant differences. Therefore, by combining near-field and
far-field light-field images, MobileNetV3_Light is expected to
accurately predict themode coefficients with almost no blurring.
Figure 8 reveals that our proposed scheme is feasible when the
number of modes is less than or equal to six.
Finally, we investigate the robustness of MobileNetV3_Light

by adding Gaussian noise to the near-field light-field map. For
the noise generation, the simulated near-field light-field map is
used as the root, which is achieved by multiplying each pixel of
the simulated near-field light-field map by a noise function p�σ�,
as shown in Eq. (9)[25],

p�σ� = 1� N�0, 1� · σ, (9)

whereN�0, 1� represents the standard normal distribution and σ
is the noise intensity. Here different sizes of noise are achieved
by varying the σ. Taking the six modes as an example, we test
1000 samples at different noise intensities and input them into
the trained MobileNetV3_Light. Figure 9 lists the simulated
near-field light-field maps and the corresponding reconstructed
near-field light-field maps for three different values of σ and
their correlations. It can be found that even if σ reaches 0.24,
the correlation still exceeds 0.995, which indicates the high noise
immunity of our method.

5. Summary

We propose a complete MD technique based on lightweight
neural networks that offer high accuracy, high performance,
and low experimental equipment requirements. The proposed
algorithm uses depth-separable convolution instead of conven-
tional convolution without any pretraining, which both reduces
the network model size and improves the speed of decomposi-
tion while maintaining high accuracy in MD conditions. The
results show that for the FMF supporting six LP modes
(LP01, LP11e, LP11o, LP21e, LP21o, LP02), our trained neural
network achieves an average mode weight error of less than
0.56% and the average relative phase error of less than 0.85%.
TheMD speed reaches about 6 ms per frame, and the model size
of the network is only about 6.5 MB, making it feasible for real-
time MD on portable mobile devices. Additionally, our pro-
posed method demonstrates robustness, even in the presence
of high noise intensity, up to 0.36.
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