• Photonics Research
  • Vol. 10, Issue 11, 2667 (2022)
Minjia Zheng1, Lei Shi1、2、3、*, and Jian Zi1、2、3、4
Author Affiliations
  • 1State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai 200433, China
  • 2Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
  • 3Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
  • 4e-mail:
  • show less
    DOI: 10.1364/PRJ.474535 Cite this Article Set citation alerts
    Minjia Zheng, Lei Shi, Jian Zi. Optimize performance of a diffractive neural network by controlling the Fresnel number[J]. Photonics Research, 2022, 10(11): 2667 Copy Citation Text show less
    References

    [1] R. Szeliski. Computer Vision: Algorithms and Applications(2010).

    [2] Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521, 436-444(2015).

    [3] P. Bartlett, A. Krizhevsky, F. Pereira, I. Sutskever, C. Burges, G. E. Hinton, L. Bottou, K. Weinberger. Advances in Neural Information Processing Systems 25 (NIPS 2012): 26th Annual Conference on Neural Information Processing Systems 2012(2012).

    [4] D. Touretzky, Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, L. Jackel. Advances in Neural Information Processing Systems, 2(1989).

    [5] R. M. Haralick, L. G. Shapiro. Image segmentation techniques. Comput. Vis. Graph. Image Process., 29, 100-132(1985).

    [6] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, D. Terzopoulos. Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell., 44, 3523-3542(2021).

    [7] A. Borji, M.-M. Cheng, H. Jiang, J. Li. Salient object detection: A benchmark. IEEE Trans. Image Process., 24, 5706-5722(2015).

    [8] H. Fu, X. Cao, Z. Tu. Cluster-based co-saliency detection. IEEE Trans. Image Process., 22, 3766-3778(2013).

    [9] W. Wang, J. Shen, L. Shao. Video salient object detection via fully convolutional networks. IEEE Trans. Image Process., 27, 38-49(2017).

    [10] A. Wang, M. Wang. RGB-D salient object detection via minimum barrier distance transform and saliency fusion. IEEE Signal Process. Lett., 24, 663-667(2017).

    [11] A. Chaurasia, E. Culurciello. LinkNet: exploiting encoder representations for efficient semantic segmentation. IEEE Visual Communications and Image Processing (VCIP), 1-4(2017).

    [12] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, F.-F. Li. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis., 115, 211-252(2015).

    [13] W. Zhang, K. Itoh, J. Tanida, Y. Ichioka. Parallel distributed processing model with local space-invariant interconnections and its optical architecture. Appl. Opt., 29, 4790-4797(1990).

    [14] W. S. Sarle. Neural networks and statistical models. Proceedings of the 19th Annual SAS Users Group International Conference(1994).

    [15] R. Hamerly, L. Bernstein, A. Sludds, M. Soljačić, D. Englund. Large-scale optical neural networks based on photoelectric multiplication. Phys. Rev. X, 9, 021032(2019).

    [16] A. Adamatzky. Unconventional Computing: A Volume in the Encyclopedia of Complexity and Systems Science(2018).

    [17] J. M. Shainline, S. M. Buckley, R. P. Mirin, S. W. Nam. Superconducting optoelectronic circuits for neuromorphic computing. Phys. Rev. Appl., 7, 034013(2017).

    [18] H. N. Khan, D. A. Hounshell, E. R. Fuchs. Science and research policy at the end of Moore’s law. Nat. Electron., 1, 14-21(2018).

    [19] J. Bueno, S. Maktoobi, L. Froehly, I. Fischer, M. Jacquot, L. Larger, D. Brunner. Reinforcement learning in a large-scale photonic recurrent neural network. Optica, 5, 756-760(2018).

    [20] T. W. Hughes, M. Minkov, Y. Shi, S. Fan. Training of photonic neural networks through in situ backpropagation and gradient measurement. Optica, 5, 864-871(2018).

    [21] P. R. Prucnal, B. J. Shastri, M. C. Teich. Neuromorphic Photonics(2017).

    [22] D. Pérez, I. Gasulla, P. D. Mahapatra, J. Capmany. Principles, fundamentals, and applications of programmable integrated photonics. Adv. Opt. Photon., 12, 709-786(2020).

    [23] X. Xu, M. Tan, B. Corcoran, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, D. G. Hicks, R. Morandotti, A. Mitchell, D. J. Moss. 11 tops photonic convolutional accelerator for optical neural networks. Nature, 589, 44-51(2021).

    [24] B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. Pernice, H. Bhaskaran, C. D. Wright, P. R. Prucnal. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics, 15, 102-114(2021).

    [25] J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. Pernice, H. Bhaskaran. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52-58(2021).

    [26] X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, A. Ozcan. All-optical machine learning using diffractive deep neural networks. Science, 361, 1004-1008(2018).

    [27] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, M. Soljačić. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).

    [28] A. N. Tait, T. F. De Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, P. R. Prucnal. Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep., 7, 7430(2017).

    [29] M. Hermans, M. Burm, T. Van Vaerenbergh, J. Dambre, P. Bienstman. Trainable hardware for dynamical computing using error backpropagation through physical media. Nat. Commun., 6, 6729(2015).

    [30] D. Brunner, M. C. Soriano, C. R. Mirasso, I. Fischer. Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun., 4, 1364(2013).

    [31] M. M. P. Fard, I. A. D. Williamson, M. Edwards, K. Liu, S. Pai, B. Bartlett, M. Minkov, T. W. Hughes, S. Fan, T.-A. Nguyen. Experimental realization of arbitrary activation functions for optical neural networks. Opt. Express, 28, 12138-12148(2020).

    [32] S. Pai, Z. Sun, T. W. Hughes, T. Park, B. Bartlett, I. A. D. Williamson, M. Minkov, M. Milanizadeh, N. Abebe, F. Morichetti, A. Melloni, S. Fan, O. Solgaard, D. A. B. Miller. Experimentally realized in situ backpropagation for deep learning in nanophotonic neural networks(2022).

    [33] G. Wetzstein, A. Ozcan, S. Gigan, S. Fan, D. Englund, M. Soljačić, C. Denz, D. A. Miller, D. Psaltis. Inference in artificial intelligence with deep optics and photonics. Nature, 588, 39-47(2020).

    [34] I. Chakraborty, G. Saha, A. Sengupta, K. Roy. Toward fast neural computing using all-photonic phase change spiking neurons. Sci. Rep., 8, 12980(2018).

    [35] J. Chang, V. Sitzmann, X. Dun, W. Heidrich, G. Wetzstein. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci. Rep., 8, 12324(2018).

    [36] L. Mennel, J. Symonowicz, S. Wachter, D. K. Polyushkin, A. J. Molina-Mendoza, T. Mueller. Ultrafast machine vision with 2D material neural network image sensors. Nature, 579, 62-66(2020).

    [37] Y. Zuo, B. Li, Y. Zhao, Y. Jiang, Y.-C. Chen, P. Chen, G.-B. Jo, J. Liu, S. Du. All-optical neural network with nonlinear activation functions. Optica, 6, 1132-1137(2019).

    [38] X. Luo, Y. Hu, X. Ou, X. Li, J. Lai, N. Liu, X. Cheng, A. Pan, H. Duan. Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible. Light Sci. Appl., 11, 158(2022).

    [39] J. Li, Y.-C. Hung, O. Kulce, D. Mengu, A. Ozcan. Polarization multiplexed diffractive computing: all-optical implementation of a group of linear transformations through a polarization-encoded diffractive network. Light Sci. Appl., 11, 153(2022).

    [40] F. Ashtiani, A. J. Geers, F. Aflatouni. An on-chip photonic deep neural network for image classification. Nature, 606, 501-506(2022).

    [41] T. W. Hughes, I. A. Williamson, M. Minkov, S. Fan. Wave physics as an analog recurrent neural network. Sci. Adv., 5, eaay6946(2019).

    [42] H. Dou, Y. Deng, T. Yan, H. Wu, X. Lin, Q. Dai. Residual D2NM: training diffractive deep neural networks via learnable light shortcuts. Opt. Lett., 45, 2688-2691(2020).

    [43] C. Qian, X. Lin, X. Lin, J. Xu, Y. Sun, E. Li, B. Zhang, H. Chen. Performing optical logic operations by a diffractive neural network. Light Sci. Appl., 9, 59(2020).

    [44] S. Jiao, J. Feng, Y. Gao, T. Lei, Z. Xie, X. Yuan. Optical machine learning with incoherent light and a single-pixel detector. Opt. Lett., 44, 5186-5189(2019).

    [45] Z. Wu, M. Zhou, E. Khoram, B. Liu, Z. Yu. Neuromorphic metasurface. Photon. Res., 8, 46-50(2020).

    [46] Z. Wu, Z. Yu. Small object recognition with trainable lens. APL Photon., 6, 071301(2021).

    [47] T. Zhou, X. Lin, J. Wu, Y. Chen, H. Xie, Y. Li, J. Fan, H. Wu, L. Fang, Q. Dai. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photonics, 15, 367-373(2021).

    [48] H. Chen, J. Feng, M. Jiang, Y. Wang, J. Lin, J. Tan, P. Jin. Diffractive deep neural networks at visible wavelengths. Engineering, 7, 1483-1491(2021).

    [49] Y. Hu, X. Luo, Y. Chen, Q. Liu, X. Li, Y. Wang, N. Liu, H. Duan. 3D-integrated metasurfaces for full-colour holography. Light Sci. Appl., 8, 86(2019).

    [50] Y. Chen, Z. Shu, S. Zhang, P. Zeng, H. Liang, M. Zheng, H. Duan. Sub-10 nm fabrication: methods and applications. Int. J. Extreme Manuf., 3, 032002(2021).

    [51] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner. Gradient-based learning applied to document recognition. Proc. IEEE, 86, 2278-2324(1998).

    [52] A. W. Lohmann. Wavefront reconstruction for incoherent objects. J. Opt. Soc. Am., 55, 1555-1556(1965).

    [53] R. W. Gerchberg, W. O. Saxton. A practical algorithm for the determination of plane from image and diffraction pictures. Optik, 35, 237-246(1972).

    Minjia Zheng, Lei Shi, Jian Zi. Optimize performance of a diffractive neural network by controlling the Fresnel number[J]. Photonics Research, 2022, 10(11): 2667
    Download Citation