• Chinese Journal of Quantum Electronics
  • Vol. 39, Issue 6, 817 (2022)
Yan GUO*, Yikang HE, Xianye LI, and Baoqing SUN
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2022.06.001 Cite this Article
    GUO Yan, HE Yikang, LI Xianye, SUN Baoqing. Recent advances in single-pixel complex optical field imaging[J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 817 Copy Citation Text show less
    References

    [1] Prevedel R, Yoon Y G, Hoffmann M, et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy[J]. Nature Methods, 2014, 11(7): 727-730.

    [2] Park J I, Lee M H, Grossberg M D, et al. Multispectral imaging using multiplexed illumination[C]. IEEE 11th International Conference on Computer Vision, 2007: 1-8.

    [3] Leininger B, Edwards J, Antoniades J, et al. Autonomous real-time ground ubiquitous surveillance-imaging system (ARGUS-IS)[C]. Proceedings of SPIE, 2008: 69810H.

    [4] Marks D L, Son H S, Kim J, et al. Engineering a gigapixel monocentric multiscale camera[J]. Optical Engineering, 2012, 51(8): 083202.

    [5] Baraniuk R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.

    [6] Katkovnik V, Shevkunov I, Petrov N V, et al. Computational super-resolution phase retrieval from multiple phase-coded diffraction patterns: Simulation study and experiments[J]. Optica, 2017, 4(7): 786-794.

    [7] Gao L, Liang J Y, Li C Y, et al. Single-shot compressed ultrafast photography at one hundred billion frames per second[J]. Nature, 2014, 516(7529): 74-77.

    [8] Liu Y, Yuan X, Suo J L, et al. Rank minimization for snapshot compressive imaging[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(12): 2990-3006.

    [9] Chan W L, Charan K, Takhar D, et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 2008, 93(12): 121105.

    [10] Radwell N, Mitchell K J, Gibson G M, et al. Single-pixel infrared and visible microscope[J]. Optica, 2014, 1(5): 285-289.

    [11] Paredes J L, Arce G R, Wang Z M. Ultra-wideband compressed sensing: Channel estimation[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(3): 383-395.

    [12] Clemente P, Durán V, Torres-Company V, et al. Optical encryption based on computational ghost imaging[J]. Optics Letters, 2010, 35(14): 2391-2393.

    [13] Liu Y, Suo J L, Zhang Y L, et al. Single-pixel phase and fluorescence microscope[J]. Optics Express, 2018, 26(25): 32451-32462.

    [14] Fan X H, Tian Y Z, Han J H, et al. Lensless single pixel imaging based on LCD[J]. Chinese Journal of Quantum Electronics, 2016, 33(4): 405-410.

    [15] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 1995, 52(5): R3429-R3432.

    [16] Erkmen B I, Shapiro J H. Unified theory of ghost imaging with Gaussian-state light[J]. Physical Review A, 2008, 77(4): 043809.

    [17] Takhar D, Laska J N, Wakin M B, et al. A new compressive imaging camera architecture using optical-domain compression[C]. Proceedings of SPIE, 2006, 6065: 606509.

    [18] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

    [19] Duarte M F, Davenport M A, Takhar D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91.

    [20] Charbon E. Single-photon imaging in complementary metal oxide semiconductor processes[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 372(2012): 20130100.

    [21] Aspden R S, Gemmell N R, Morris P A, et al. Photon-sparse microscopy: Visible light imaging using infrared illumination[J]. Optica, 2015, 2(12): 1049-1052.

    [22] Huo J, Li M F, Yang R, et al. High sensitive near infrared imaging system based on single element detectors[J]. Infrared and Laser Engineering, 2016, 45(Sup 1): 8-12.

    [23] Stantchev R I, Sun B Q, Hornett S M, et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector[J]. Science Advances, 2016, 2(6): e1600190.

    [24] She R B, Zhu Y L, Liu W Q, et al. Terahertz single-pixel computational imaging: Principles and applications (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 135-153.

    [25] Welsh S S, Edgar M P, Bowman R, et al. Fast full-color computational imaging with single-pixel detectors[J]. Optics Express, 2013, 21(20): 23068-23074.

    [26] Zhang Z B, Liu S J, Peng J Z, et al. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements[J]. Optica, 2018, 5(3): 315.

    [27] Sun B, Edgar M P, Bowman R, et al. 3D computational imaging with single-pixel detectors[J]. Science, 2013, 340(6134): 844-847.

    [28] Sun M J, Edgar M P, Gibson G M, et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature Communications, 2016, 7(1): 12010.

    [29] Yao M H, Cai Z X, Qiu X, et al. Full-color light-field microscopy via single-pixel imaging[J]. Optics Express, 2020, 28(5): 6521-6536.

    [30] Wu H D, Zhao M, Li F Q. Underwater polarization-based single pixel imaging[J]. Journal of the Society for Information Display, 2020, 28(2): 157-163.

    [31] Zheng G A, Shen C, Jiang S W, et al. Concept, implementations and applications of Fourier ptychography[J]. Nature Reviews Physics, 2021, 3(3): 207-223.

    [32] Barty A, Boutet S, Bogan M J, et al. Ultrafast single-shot diffraction imaging of nanoscale dynamics[J]. Nature Photonics, 2008, 2(7): 415-419.

    [33] Huang X J, Harder R, Leake S, et al. Three-dimensional Bragg coherent diffraction imaging of an extended ZnO crystal[J]. Journal of Applied Crystallography, 2012, 45(4): 778-784.

    [34] Zernike F. How I discovered phase contrast[J]. Science, 1955, 121(3141): 345-349.

    [35] Thibault P, Dierolf M, Bunk O, et al. Probe retrieval in ptychographic coherent diffractive imaging[J]. Ultramicroscopy, 2009, 109(4): 338-343.

    [36] Nugent K A, Gureyev T E, Cookson D J, et al. Quantitative phase imaging using hard X rays[J]. Physical Review Letters, 1996, 77(14): 2961-2964.

    [37] Gureyev T E, Roberts A, Nugent K A. Phase retrieval with the transport-of-intensity equation: Matrix solution with use of Zernike polynomials[J]. Journal of the Optical Society of America A, 1995, 12(9): 1932-1941.

    [38] Liu Y F, Yu P P, Hu X Y, et al. Single-pixel spiral phase contrast imaging[J]. Optics Letters, 2020, 45(14): 4028-4031.

    [39] Clemente P, Durán V, Tajahuerce E, et al. Single-pixel digital ghost holography[J]. Physical Review A, 2012, 86(4): 041803.

    [40] Horisaki R, Matsui H, Tanida J. Single-pixel compressive diffractive imaging with structured illumination[J]. Applied Optics, 2017, 56(14): 4085-4089.

    [41] Li M, Bian L H, Zheng G A, et al. Single-pixel ptychography[J]. Optics Letters, 2021, 46(7): 1624-1627.

    [42] Li X Y, Sun Y F, He Y K, et al. Quantitative imaging for optical field via a single-pixel detector[J]. Signal Processing, 2021, 188: 108173.

    [43] Edgar M P, Gibson G M, Padgett M J. Principles and prospects for single-pixel imaging[J]. Nature Photonics, 2019, 13(1): 13-20.

    [44] Chan K W C, O’Sullivan M N, Boyd R W. Optimization of thermal ghost imaging: High-order correlations vs. background subtraction[J]. Optics Express, 2010, 18(6): 5562-5573.

    [45] Candes E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.

    [46] Wilkins S W, Gureyev T E, Gao D, et al. Phase-contrast imaging using polychromatic hard X-rays[J]. Nature, 1996, 384(6607): 335-338.

    [47] Nomarski G. Microinterféromètre différentiel à ondes polarisées[J]. Journal de Physique et le Radium, 1955, 16: 9S-13S.

    [48] Hamilton D K, Sheppard C J R. Differential phase contrast in scanning optical microscopy[J]. Journal of Microscopy, 1984, 133(1): 27-39.

    [49] Mehta S B, Sheppard C J R. Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast[J]. Optics Letters, 2009, 34(13): 1924-1926.

    [50] Gabor D. A new microscopic principle[J]. Nature, 1948, 161(4098): 777.

    [51] Schnars U, Falldorf C, Watson J. Digital Holography and Wavefront Sensing: Principles, Techniques and Applications[M]. Berlin: Springer, 2015.

    [52] Schnars U, Jüptner W. Direct recording of holograms by a CCD target and numerical reconstruction[J]. Applied Optics, 1994, 33(2): 179-181.

    [53] Leith E N, Upatnieks J. Holograms: Their properties and uses[J]. Optical Engineering, 1965, 4(1): 040103.

    [54] Collier R. Optical Holography[M]. Amsterdam: Elsevier, 2013.

    [55] Zhang W H, Cao L C, Brady D J, et al. Twin-image-free holography: A compressive sensing approach[J]. Physical Review Letters, 2018, 121(9): 093902.

    [56] Yamaguchi I, Zhang T. Phase-shifting digital holography[J]. Optics Letters, 1997, 22(16): 1268-1270.

    [57] Fienup J R. Phase retrieval algorithms: A comparison[J]. Applied Optics, 1982, 21(15): 2758-2769.

    [58] Fienup J R, Wackerman C C. Phase-retrieval stagnation problems and solutions[J]. Journal of the Optical Society of America A, 1986, 3(11): 1897-1907.

    [59] Shechtman Y, Eldar Y C, Cohen O, et al. Phase retrieval with application to optical imaging: A contemporary overview[J]. IEEE Signal Processing Magazine, 2015, 32(3): 87-109.[LinkOut]

    [60] Zhang F C, Rodenburg J M. Phase retrieval based on wave-front relay and modulation[J]. Physical Review B, 2010, 82(12): 121104.

    [61] Chung J, Kim J, Ou X Z, et al. Simultaneous fluorescence and high-resolution bright-field imaging with aberration correction over a wide field-of-view with Fourier ptychographic microscopy (FPM)[C]. Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXIII, 2016, 9713: 97130I.

    [62] Rodenburg J M, Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 2004, 85(20): 4795-4797.

    [63] Zheng G A, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 2013, 7(9): 739-745.

    [64] Zuo C, Chen Q, Asundi A. Boundary-artifact-free phase retrieval with the transport of intensity equation: Fast solution with use of discrete cosine transform[J]. Optics Express, 2014, 22(8): 9220-9244.

    [65] Jesacher A, Fürhapter S, Bernet S, et al. Shadow effects in spiral phase contrast microscopy[J]. Physical Review Letters, 2005, 94(23): 233902.

    [66] Shirai T, Setl T, Friberg A T. Ghost imaging of phase objects with classical incoherent light[J]. Physical Review A, 2011, 84(4): 041801.

    [67] Jack B, Leach J, Romero J, et al. Holographic ghost imaging and the violation of a Bell inequality[J]. Physical Review Letters, 2009, 103(8): 083602.

    [68] Song H Q, Zhang Y W, Ren Y H, et al. Non-local edge enhanced imaging with incoherent thermal light[J]. Applied Physics Letters, 2020, 116(17): 174001.

    [69] Clemente P, Durán V, Tajahuerce E, et al. Compressive holography with a single-pixel detector[J]. Optics Letters, 2013, 38(14): 2524-2527.

    [70] Martínez-León L, Clemente P, Mori Y, et al. Single-pixel digital holography with phase-encoded illumination[J]. Optics Express, 2017, 25(5): 4975-4984.

    [71] Ota K, Hayasaki Y. Complex-amplitude single-pixel imaging[J]. Optics Letters, 2018, 43(15): 3682-3685.

    [72] Liu R F, Zhao S P, Zhang P, et al. Complex wavefront reconstruction with single-pixel detector[J]. Applied Physics Letters, 2019, 114(16): 161901.

    [73] Hou H Y, Zhao Y N, Han J C, et al. Complex-amplitude single-pixel imaging using coherent structured illumination[J]. Optics Express, 2021, 29(25): 41827.

    [74] Zhao S P, Liu R F, Zhang P, et al. Fourier single-pixel reconstruction of a complex amplitude optical field[J]. Optics Letters, 2019, 44(13): 3278-3281.

    [75] Lee K, Ahn J. Single-pixel coherent diffraction imaging[J]. Applied Physics Letters, 2010, 97(24): 241101.

    [76] Horisaki R, Matsui H, Egami R, et al. Single-pixel compressive diffractive imaging[J]. Applied Optics, 2017, 56(5): 1353-1357.

    [77] Bioucas-Dias J M, Figueiredo M A T. A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing, 2007, 16(12): 2992-3004.

    GUO Yan, HE Yikang, LI Xianye, SUN Baoqing. Recent advances in single-pixel complex optical field imaging[J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 817
    Download Citation