• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 4, 539 (2021)
Zhicheng PEI*, Zhaohua DING, Yanbo GENG, and Jinling XIAO
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2021.04.016 Cite this Article
    PEI Zhicheng, DING Zhaohua, GENG Yanbo, XIAO Jinling. Magnetic field effect of weak coupling polaron of monolayer transition metal dichalcogenides[J]. Chinese Journal of Quantum Electronics, 2021, 38(4): 539 Copy Citation Text show less
    References

    [1] Choi W, Choudhary N, Han G H, et al. Recent development of two-dimensional transition metal dichalcogenides and their applications[J]. Materials Today, 2017, 20(3): 116-130.

    [2] Liu Y, Weiss N O, Duan X D, et al. Van der Waals heterostructures and devices[J]. Nature Reviews Materials, 2016, 1(9): 16042.

    [3] Wei T R, Qin Y T, Deng T T, et al. Copper chalcogenide thermoelectric materials[J]. Science China Materials, 2019, 62(1): 8-24.

    [4] Yin Z Y, Li H, Li H, et al. Single-layer MoS2 phototransistors[J]. ACS Nano, 2012, 6(1): 74-80.

    [5] Viswan G, Reshmi S, Sachidanand P S, et al. Electrical characterization of tailored MoS2 nanostructures[J]. IOP Conference Series: Materials Science and Engineering, 2019, 577: 012163.

    [6] Shi H L, Pan H, Zhang Y W, et al. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2[J]. Physical Review B, 2013, 87(15): 155304.

    [7] Lee J, Huang J S, Sumpter B G, et al. Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures[J]. D Materials, 2017, 4(2): 021016.

    [8] Raja A, Chaves A, Yu J, et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials[J]. Nature Communications, 2017, 8: 15251.

    [9] Withers F, del Pozo-Zamudio O, Mishchenko A, et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures[J]. Nature Materials, 2015, 14(3): 301-306.

    [10] Trolle M L, Pedersen T G, Véniard V. Model dielectric function for 2D semiconductors including substrate screening[J]. Scientific Reports, 2017, 7: 39844.

    [11] Zhang H R, Li Y, Gao K Y. Mean number of phonons of weak-coupling polaron in triangular quantum well[J]. Chinese Journal of Quantum Electronics, 2018, 35(6): 743-746.

    [12] Zhang H R, Xiao J L. The effective mass of weakly-coupling polaron in a triangular quantum well induced by the Rashba effect[J]. Chinese Journal of Luminescence, 2010, 31(1): 12-16.

    [13] Kormányos A, Zólyomi V, Drummond N D, et al. Erratum: Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides[J]. Physical Review X, 2014, 4(1): 011034.

    [14] Li R Z, Dong X Y, Li Z Q, et al. Correction of the exciton Bohr radius in monolayer transition metal dichalcogenides[J]. Solid State Communications, 2018, 275: 53-57.

    [15] Kristen K, Bhargavi K S, Kubakaddi S S. Hot-electron cooling by acoustic and optical phonons in monolayers of MoS2 and other transition-metal dichalcogenides[J]. Physical Review B, 2014, 90(16): 165436.

    [16] Kaasbjerg K, Thygesen K S, Jacobsen K W. Phonon-limited mobility in n-type single-layer MoS2 from first principles[J]. Physical Review B, 2012, 85(11): 115317.

    [17] Sohier T, Calandra M, Mauri F. Erratum: Two-dimensional Frhlich interaction in transition-metal dichalcogenide monolayers: Theoretical modeling and first-principles calculations[J]. Physical Review B, 2016, 94(8): 085415.

    PEI Zhicheng, DING Zhaohua, GENG Yanbo, XIAO Jinling. Magnetic field effect of weak coupling polaron of monolayer transition metal dichalcogenides[J]. Chinese Journal of Quantum Electronics, 2021, 38(4): 539
    Download Citation