• Acta Optica Sinica
  • Vol. 38, Issue 5, 0513003 (2018)
Shaoliang Wang, Ziwei Ye, Xiliang Peng, and Ran Hao*
Author Affiliations
  • Key Laboratory for Advanced Microelectronic Intelligent Systems and Applications, Zhejiang University, Hangzhou, Zhejiang 310027, China
  • show less
    DOI: 10.3788/AOS201838.0513003 Cite this Article Set citation alerts
    Shaoliang Wang, Ziwei Ye, Xiliang Peng, Ran Hao. Study of Highly-Efficient Composite Waveguide Modulator Based on Graphene[J]. Acta Optica Sinica, 2018, 38(5): 0513003 Copy Citation Text show less
    References

    [1] Doerr C R, Zhang L, Winzer P J et al. Compact high-speed InP DQPSK modulator[J]. IEEE Photonics Technology Letters, 19, 1184-1186(2007). http://ieeexplore.ieee.org/document/4268353/

    [2] Griffin R A, Jones S K, Whitbread N et al. InP Mach-Zehnder modulator platform for 10/40/100/200-Gb/s operation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 158-166(2013). http://ieeexplore.ieee.org/document/6556976/

    [3] Thomson D J, Gardes F Y, Fedeli J M et al. 50-Gb/s silicon optical modulator[J]. IEEE Photonics Technology Letters, 24, 234-236(2012). http://ieeexplore.ieee.org/document/6086568/

    [4] Ding J F, Ji R Q, Zhang L et al. Electro-optical response analysis of a 40 Gb/s silicon Mach-Zehnder optical modulator[J]. Journal of Lightwave Technology, 31, 2434-2440(2013). http://ieeexplore.ieee.org/document/6515626/

    [5] Hao R, Du W, Chen H S et al. Ultra-compact optical modulator by graphene induced electro-refraction effect[J]. Applied Physics Letters, 103, 061116(2013). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6578017

    [6] Novoselov K S, Geim A K, Morozov S V et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 438, 197-200(2005). http://www.nature.com/nature/journal/v438/n7065/abs/nature04233.html?lang=en

    [7] Mak K F, Sfeir M Y, Wu Y et al. Measurement of the optical conductivity of graphene[J]. Physical Review Letters, 101, 196405(2008). http://europepmc.org/abstract/MED/19113291

    [8] Tan Y W, Zhang Y, Stormer H L et al. Temperature dependent electron transport in graphene[J]. European Physical Journal Special Topics, 148, 15-18(2007). http://link.springer.com/article/10.1140/epjst/e2007-00221-9

    [9] Liu M, Yin X B, Ulin-Avila E et al. A graphene-based broadband optical modulator[J]. Nature, 474, 64-67(2011). http://www.ncbi.nlm.nih.gov/pubmed/21552277

    [10] Xiao Y, Zhang J, Cai X et al. Fiber-optic humidity sensing based on graphene[J]. Acta Optica Sinica, 35, 0406005(2015).

    [11] Liao G Z, Zhang J, Cai X et al. All-fiber temperature sensor based on graphene[J]. Acta Optica Sinica, 33, 0706004(2013).

    [12] Liu Y Z, Zhang Y P, Cao Y Y et al. Modulator of tunable modulation depth on graphene metamaterial[J]. Acta Optica Sinica, 36, 1016002(2016).

    [13] Peng X L, Hao R, Ye Z W et al. Highly efficient graphene-on-gap modulator by employing the hybrid plasmonic effect[J]. Optics Letters, 42, 1736-1739(2017). http://europepmc.org/abstract/MED/28454148

    [14] Phatak A, Cheng Z Z, Qin C et al. Design of electro-optic modulators based on graphene-on-silicon slot waveguides[J]. Optics Letters, 41, 2501-2504(2016). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-41-11-2501

    [15] Du W, Li E P, Hao R. Tunability analysis of a graphene-embedded ring modulator[J]. IEEE Photonics Technology Letters, 26, 2008-2011(2014). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6874509

    [16] Guan X W, Wu H, Shi Y C et al. Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire[J]. Optics Letters, 38, 3005-3008(2013). http://www.opticsinfobase.org/abstract.cfm?uri=ol-38-16-3005

    [17] Youngblood N, Anugrah Y, Ma R et al. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides[J]. Nano Letters, 14, 2741-2746(2014). http://www.ncbi.nlm.nih.gov/pubmed/24734877

    [18] Almeida V R, Xu Q F, Barrios C A et al. Guiding and confining light in void nanostructure[J]. Optics Letters, 29, 1209-1211(2004). http://onlinelibrary.wiley.com/resolve/reference/PMED?id=15209249

    [19] Cheng Z Z, Chen X, Wong C Y et al. Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide[J]. Optics Letters, 37, 1217-1219(2012). http://europepmc.org/abstract/MED/22466200

    [20] Huang B H, Lu W B, Li X B et al. Waveguide-coupled hybrid plasmonic modulator based on graphene[J]. Applied Optics, 55, 5598-5602(2016). http://www.ncbi.nlm.nih.gov/pubmed/27463912

    Shaoliang Wang, Ziwei Ye, Xiliang Peng, Ran Hao. Study of Highly-Efficient Composite Waveguide Modulator Based on Graphene[J]. Acta Optica Sinica, 2018, 38(5): 0513003
    Download Citation