• Laser & Optoelectronics Progress
  • Vol. 50, Issue 5, 50001 (2013)
Wang Huolei1、*, Kong Liang2, Pan Jiaoqing1, Xu Tianhong3, Ji Wei4, Ni Haiqiao1, Cui Bifeng4, and Ding Ying2、5
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • 5[in Chinese]
  • show less
    DOI: 10.3788/lop50.050001 Cite this Article Set citation alerts
    Wang Huolei, Kong Liang, Pan Jiaoqing, Xu Tianhong, Ji Wei, Ni Haiqiao, Cui Bifeng, Ding Ying. Recent Progress of Semiconductor Mode-Locked Lasers[J]. Laser & Optoelectronics Progress, 2013, 50(5): 50001 Copy Citation Text show less
    References

    [1] B. Kolner, D. Bloom. Electrooptic sampling in GaAs integrated circuits[J]. IEEE J. Quant. Electron., 1986, 22(1): 79~93

    [2] P. W. Juodawlkis, J. C. Twichell, G. E. Betts et al.. Optically sampled analog-to-digital converters[J]. IEEE Trans. Microwave Theory and Techniques, 2001, 49(10): 1840~1853

    [3] T. Nagatsuma, M. Shinagawa, N. Sabri et al.. 1.55 μm photonic systems for microwave and millimeter-wave measurement[J]. IEEE Trans. Microwave Theory and Techniques, 2001, 49(10): 1831~1839

    [4] R. Hellwarth, P. Christensen. Nonlinear optical microscope using second harmonic generation[J]. Appl. Opt., 1975, 14(2): 247~248

    [5] P. J. Delfyett, D. H. Hartman, S. Z. Ahmad. Optical clock distribution using a mode-locked semiconductor laser diode system[J]. J. Lightwave Technol., 1991, 9(12): 1646~1649

    [6] A. J. C. Vieira, P. R. Herczfeld, A. Rosen et al.. A mode-locked microchip laser optical transmitter for fiber radio[J]. IEEE Trans. Microwave Theory and Techniques, 2001, 49(10): 1882~1887

    [7] K. Vlachos, N. Pleros, C. Bintjas et al.. Ultrafast time-domain technology and its application in all-optical signal processing[J]. J. Lightwave Technol., 2003, 21(9): 1857~1868

    [8] T. Ohno, K. Sato, R. Iga et al.. Recovery of 160 GHz optical clock from 160 Gbit/s data stream using modelocked laser diode[J]. Electron. Lett., 2004, 40(4): 265~267

    [9] Li Jianjun, Han Jun, Deng Jun et al.. Tunnel regeneration high-power semiconductor laser with four active regions[J]. Acta Optica Sinica, 2006, 26:(12): 1819~1822

    [10] Fu Jie, Pang Qingsheng, Chang Liang et al.. Research on cavity-dumping mode-locked laser of picosecond at 10 kHz[J]. Acta Optica Sinica, 2011, 31(3): 0314002

    [11] Shi Mingwei, Liu Bowen, Wang Sijia et al.. Generation of giant-chirp laser pulses in a stretched-pulse mode-locked fiber laser[J]. Chinese J. Lasers, 2012, 39(2): 0202007

    [12] K. Byoung-Sung, C. Younchul, K. Sen-Ho. Dynamic analysis of mode-locked sampled-grating distributed Bragg reflector laser diodes[J]. IEEE J. Quant. Electron., 1999, 35(11): 1623~1629

    [13] R. Kaiser, B. Huttl, C. Kindel et al.. Effects of on-chip wavelength tuning on pulse and noise characteristics of monolithic mode-locked 40 GHz SIPBH DBR lasers[C]. IEEE 19th International Semiconductor Laser Conference, 2004. 95~96

    [14] K. Yvind, D. Larsson, L. J. Christiansen et al.. Low-jitter and high-power 40-GHz all-active mode-locked lasers[J]. IEEE Photon. Technol. Lett., 2004, 16(4): 975~977

    [15] I. Ogura, H. Kurita, T. Sasaki et al.. Precise operation-frequency control of monolithic mode-locked laser diodes for high-speed optical communication and all-optical signal processing[J]. Opt. Quant. Electron., 2001, 33(7): 709~725

    [16] Z. G. Lu, J. R. Liu, S. Raymond et al.. 312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser[J]. Opt. Express, 2008, 16(14): 10835~10840

    [17] Y. Barbarin, E. A. J. M. Bente, M. J. R. Heck et al.. Characterization of a 15 GHz integrated bulk InGaAsP passively modelocked ring laser at 1.53 μm[J]. Opt. Express, 2006, 14(21): 9716~9727

    [18] R. Kaiser, B. Huttl. Monolithic 40-GHz mode-locked MQW DBR lasers for high-speed optical communication systems[J]. IEEE J. Sel. Top. Quant. Electron., 2007, 13(1): 125~135

    [19] D. Ying, A. Alhazime, D. Nikitichev et al.. Tunable master-oscillator power-amplifier based on chirped quantum-dot structures[J]. IEEE Photon. Technol. Lett., 2012, 24(20): 1841~1844

    [20] C. Ji, N. Chubun, R. G. Broeke et al.. Synchronized transform-limited operation of 10-GHz colliding pulse mode-locked laser[J]. IEEE Photon. Technol. Lett., 2006, 18(4): 625~627

    [21] R. Koda, T. Oki, T. Miyajima et al.. 100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier[J]. Appl. Phys. Lett., 2010, 97(2): 021101

    [22] T. Oki, K. Saito, H. Watanabe et al.. Passive and hybrid mode-locking of an external-cavity GaInN laser diode incorporating a strong saturable absorber[J]. Appl. Phys. Express, 2010, 3(3): 032104

    [23] H. Watanabe, T. Miyajima, M. Kuramoto et al.. 10-W peak-power picosecond optical pulse generation from a triple section blue-violet self-pulsating laser diode[J]. Appl. Phys. Express, 2010, 3(5): 052701

    [24] S. Gee, J. E. Bowers. Ultraviolet picosecond optical pulse generation from a mode-locked InGaN laser diode[J]. Appl. Phys. Lett., 2001, 79(13): 1951~1952

    [25] M. Yoshita, M. Kuramoto, M. Ikeda et al.. Mode locking of a GaInN semiconductor laser with an internal saturable absorber[J]. Appl. Phys. Lett., 2009, 94(6): 061104

    [26] T. Oki, R. Koda, S. Kono et al.. Direct generation of 20 W peak power picosecond optical pulses from an external-cavity mode-locked GaInN laser diode incorporating a flared waveguide[J]. Appl. Phys. Lett., 2001, 99(11): 111105

    [27] M. Kuramoto, T. Oki, T. Sugahara et al.. Enormously high-peak-power optical pulse generation from a single-transverse-mode GaInN blue-violet laser diode[J]. Appl. Phys. Lett., 2010, 96(5): 051102

    [28] R. Koda, T. Oki, S. Kono et al.. 300 W peak power picosecond optical pulse generation by blue-violet GaInN mode-locked laser diode and semiconductor optical amplifier[J]. Appl. Phys. Express, 2012, 5(2): 022702

    [29] K. Saito, H. Watanabe, T. Miyajima et al. Mode locking of an external-cavity bisection GaInN blue-violet laser diode producing 3 ps duration optical pulses[J]. Appl. Phys. Lett., 2010, 96(3): 031112

    [30] H. Masuda, A. Takada. Picosecond optical pulse generation from mode-locked phased laser diode array[J]. Electron. Lett., 1989, 25(21): 1418~1419

    [31] L. Y. Pang, J. G. Fujimoto, E. S. Kintzer. Ultrashort-pulse generation from high-power diode arrays by using intracavity optical nonlinearities[J]. Opt. Lett., 1992, 17(22): 1599~1601

    [32] L. E. Adams, E. S. Kintzer, M. Ramaswamy et al.. Mode locking of a broad-area semiconductor laser with a multiple-quantum-well saturable absorber[J]. Opt. Lett., 1993, 18(22): 1940~1942

    [33] N. Stelmakh, J. M. Lourtioz. 230 fs, 25 W pulses from conventional mode-locked laser diodes with saturable absorber created by ion implantation[J]. Electron. Lett., 1993, 29(2): 160~162

    [34] P. J. Delfyett, C. H. Lee, G. A. Alphonse et al.. High peak power picosecond pulse generation from AlGaAs external cavity mode-locked semiconductor laser and traveling-wave amplifier[J]. Appl. Phys. Lett., 1990, 57(10): 971~973

    [35] A. Mar, R. Helkey, J. Bowers. Mode-locked operation of a master oscillator power amplifier[J]. IEEE Photon. Technol. Letter., 1994, 6(9): 1067~1069

    [36] L. Goldberg, D. Mehuys, D. Welch. High power mode-locked compound laser using a tapered semiconductor amplifier[J]. IEEE Photon. Technol. Lett., 1994, 6(9): 1070~1072

    [37] N. K. Masaru Kuramoto, Hengchang Guo, Yuji Furushima et al.. Two-photon fluorescence bioimaging with an all-semiconductor laser picosecond pulse source[J]. Opt. Lett., 2007, 32(18): 2726~2728

    [38] T. Schlauch, M. Li, M. R. Hofmann et al.. High peak power femtosecond pulses from modelocked semiconductor laser in external cavity[J]. Electron. Lett., 2008, 44(11): 678~679

    [39] G. Tandoi, C. N. Ironside, J. H. Marsh et al.. Output power limitations and improvements in passively mode locked GaAs/AlGaAs quantum well lasers[J]. IEEE J. Quant. Electron., 2012, 48(3): 318~327

    [40] A. Mar, R. Helkey, W. X. Zou et al.. High-power mode-locked semiconductor lasers using flared waveguides[J]. Appl. Phys. Lett., 1995, 66(26): 3558~3560

    [41] S. Hoogland, S. Dhanjal, A. C. Tropper et al.. Passively mode-locked diode-pumped surface-emitting semiconductor laser[J]. IEEE Photon. Technol. Lett., 2000, 12(9): 1135~1137

    [42] A. Garnache, S. Hoogland, A. C. Tropper et al.. Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power[J]. Appl. Phys. Lett., 2002, 80(21): 3892~3894

    [43] R. Haring, R. Paschotta, A. Aschwanden et al.. High-power passively mode-locked semiconductor lasers[J]. IEEE J. Quant. Electron., 2002, 38(9): 1268~1275

    [44] D. Lorenser, H. J. Unold, D. J. H. C. Maas et al.. Towards wafer-scale integration of high repetition rate passively mode-locked surface-emitting semiconductor lasers[J]. Appl. Phys. B, 2004, 79(8): 927~932

    [45] A. Aschwanden, D. Lorenser, H. J. Unold et al.. 2.1-W picosecond passively mode-locked external-cavity semiconductor laser[J]. Opt. Lett., 2005, 30(3): 272~274

    [46] A. Aschwanden, D. Lorenser, H. J. Unold et al.. 10 GHz passively mode-locked external-cavity semiconductor laser with 1.4 W average output power[J]. Appl. Phys. Lett., 2005, 86(13): 131102

    [47] B. Rudin, V. J. Wittwer, D. J. H. C. Maas et al.. High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power[J]. Opt. Express, 2010, 18(26): 27582~27588

    [48] D. Lorenser, D. J. H. C. Maas, H. J. Unold et al.. 50-GHz passively mode-locked surface-emitting semiconductor laser with 100-mW average output power[J]. IEEE J. Quant. Electron., 2006, 42(8): 838~847

    [49] K. Kim, S. Lee, P. Delfyett. 1.4 kW high peak power generation from an all semiconductor mode-locked master oscillator power amplifier system based on extreme chirped pulse amplification (X-CPA)[J]. Opt. Express, 2005, 13(12): 4600~4606

    [50] J. T. Gopinath, B. Chann, R. K. Huang et al.. 980-nm monolithic passively mode-locked diode lasers with 62 pJ of pulse energy[J]. IEEE Photon. Technol. Lett., 2007, 19(12): 937~939

    [51] S. Schwertfeger, A. Klehr, A. Liero et al.. High-power picosecond pulse generation due to mode-locking with a monolithic 10-mm-long four-section DBR laser at 920 nm[J]. IEEE Photon. Technol. Lett., 2007, 19(23): 1889~1891

    [52] S. Hoogland, A. Garnache, I. Sagnes et al.. 10-GHz train of sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser[J]. IEEE Photon. Technol. Lett., 2005, 17(2): 267~269

    [53] K. Jasim, Q. Zhang, A. V. Nurmikko et al.. Picosecond pulse generation from passively modelocked vertical cavity diode laser at up to 15 GHz pulse repetition rate[J]. Electron. Lett., 2004, 40(1): 34~36

    [54] K. Jasim, Z. Qiang, A. V. Nurmikko et al.. Passively modelocked vertical extended cavity surface emitting diode laser[J]. Electron. Lett., 2003, 39(4): 373~375

    [55] K. G. Wilcox, A. H. Quarterman, V. Apostolopoulos et al.. 175 GHz, 400-fs-pulse harmonically mode-locked surface emitting semiconductor laser[J]. Opt. Express, 2012, 20(7): 7040~7045

    [56] Z. Qiang, K. Jasim, A. V. Nurmikko et al.. Operation of a passively mode-locked extended-cavity surface-emitting diode laser in multi-GHz regime[J]. IEEE Photon. Technol. Lett., 2004, 16(3): 885~887

    [57] P. Klopp, U. Griebner, M. Zorn et al.. Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser[J]. Appl. Phys. Lett., 2011, 98(7): 071103

    [58] K. G. Wilcox, A. H. Quarterman, H. Beere et al.. High peak power femtosecond pulse passively mode-locked vertical-external-cavity surface-emitting laser[J]. IEEE Photon. Technol. Lett., 2010, 22(14): 1021~1023

    [59] Ying Ding, W. Ji, Jingxiang Chen et al.. 980-nm external-cavity passively mode-locked laser with extremely narrow RF linewidth[C]. SPIE, 2013, 8640: 86401U

    [60] L. Yan, M. Breivik, F. Cheng-Yong et al.. A low repetition rate all-active monolithic passively mode-locked quantum-dot laser[J]. IEEE Photon. Technol. Lett., 2011, 23(14): 1019~1021

    [61] D. I. Nikitichev, K. A. Fedorova, Y. Ding et al.. Broad wavelength tunability from external cavity quantum-dot mode-locked laser[J]. Appl. Phys. Lett., 2012, 101(12): 121107

    [62] Y. Ding, M. A. Cataluna, D. Nikitichev et al.. Broad repetition-rate tunable quantum-dot external-cavity passively mode-locked laser with extremely narrow radio frequency linewidth[J]. Appl. Phys. Express, 2011, 4(6): 062703

    [63] L. Zhang, L. S. Cheng, A. L. Gray et al.. Low timing jitter, 5 GHz optical pulses from a monolithic two-section passively mode-locked 1250/1310 nm quantum dot laser for high speed optical interconnets[C]. OFC, 2005. OWM4

    [64] M. -T. Choi, W. Lee, J. -M. Kim et al.. Ultrashort, high-power pulse generation from a master oscillator power amplifier based on external cavity mode locking of a quantum-dot two-section diode laser[J]. Appl. Phys. Lett., 2005, 87(22): 221107

    [65] Y. Ding, D. I. Nikitichev, I. Krestnikov et al.. Quantum-dot external-cavity passively modelocked laser with high peak power and pulse energy[J]. Electron. Lett., 2010, 46(22): 1516~1518

    [66] X. Huang, A. Stintz, H. Li et al.. Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers[J]. Appl. Phys. Lett., 2001, 78(19): 2825~2827

    [67] M. G. Thompson, A. R. Rae, X. Mo et al.. InGaAs quantum-dot mode-locked laser diodes[J]. IEEE J. Quant. Electron., 2009, 15(3): 661~672

    [68] M. G. Thompson, K. T. Tan, C. Marinelli et al.. Transform-limited optical pulses from 18 GHz monolithic modelocked quantum dot lasers operating at~1.3 μm[J]. Electron. Lett., 2004, 40(5): 346~347

    [69] E. U. Rafailov, M. A. Cataluna, W. Sibbett et al.. High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser[J]. Appl. Phys. Lett., 2005, 87(8): 081107

    [70] M. G. Thompson, C. Marinelli, X. Zhao et al.. Colliding-pulse modelocked quantum dot lasers[J]. Electron. Lett., 2005, 41(5) 248~250

    [71] M. G. Thompson, A. Rae, R. L. Sellin et al.. Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers[J]. Appl. Phys. Lett., 2006, 88(13): 133119

    [72] D. Nikitichev, Y. Ding, M. Cataluna et al.. High peak power and sub-picosecond Fourier-limited pulse generation from passively mode-locked monolithic two-section gain-guided tapered InGaAs quantum-dot lasers[J]. Laser Phys., 2012, 22(4): 715~724

    [73] H. Yokoyama, A. Sato, H. C. Guo et al.. Nonlinear-microscopy optical-pulse sources based on mode-locked semiconductor lasers[J]. Opt. Express, 2008, 16(22): 17752~17758

    [74] Y. Ding, D. Nikitichev, I. Krestnikov et al.. Fundamental and harmonic mode-locking with pulse repetition rate between 200 MHz and 6.8 GHz in a quantum-dot external-cavity laser[C]. CLEO/EQEC, 2011. CF_P23

    [75] Y. Ding, R. Aviles-Espinosa, M. A. Cataluna et al.. High peak-power picosecond pulse generation at 1.26 μm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier[J]. Opt. Express, 2012, 20(13): 14308~14320

    [76] A. Rutz, V. Liverini, D. J. H. C. Maas et al.. Passively modelocked GaInNAs VECSEL at centre wavelength around 1.3 μm[J]. Electron. Lett., 2006, 42(16): 926~927

    [77] M. G. Thompson, C. Marinelli, K. T. Tan et al.. 10 GHz hybrid modelocking of monolithic InGaAs quantum dot lasers[J]. Electron. Lett., 2003, 39(15): 1121~1122

    [78] M. Kuntz, G. Fiol, M. Lmmlin et al.. Direct modulation and mode locking of 1.3 μm quantum dot lasers[J]. New J. Phys., 2004, 6: 181

    [79] D. Larsson, K. Yvind, J. M. Hvam. Long all-active monolithic mode-locked lasers with surface-etched Bragg gratings[J]. IEEE Photon. Technol. Lett., 2007, 19(21): 1723~1725

    [80] H. Lianping, R. Dylewicz, M. Haji et al.. Monolithic 40 GHz passively mode-locked AlGaInAs-InP 1.55 μm MQW laser with surface-etched distributed Bragg reflector[J]. IEEE Photon. Technol. Lett., 2010, 22(20): 1503~1505

    [81] H. Lianping, M. Haji, R. Dylewicz et al.. 10-GHz mode-locked extended cavity laser integrated with surface-etched DBR fabricated by quantum-well intermixing[J]. IEEE Photon. Technol. Lett., 2011, 23: (2): 82~84

    [82] L. Hou, M. Haji, R. Dylewicz et al.. 160 GHz harmonic mode-locked AlGaInAs 1.55 μm strained quantum-well compound-cavity laser[J]. Opt. Lett., 2010, 35(23): 3991~3993

    [83] H. Lianping, M. Haji, Q. Bocang et al.. 10-GHz AlGaInAs/InP 1.55 μm passively mode-locked laser with low divergence angle and timing jitter[J]. IEEE Photon. Technol. Lett., 2011, 23(15): 1079~1081

    [84] L. P. Hou, M. Haji, C. Li et al.. 80-GHz AlGaInAs/InP 1.55 μm colliding-pulse mode-locked laser with low divergence angle and timing jitter[J]. Laser Phys. Lett., 2011, 8(7): 535~540

    [85] Y. C. Xin, C. Y. Lin, Y. Li et al.. Monolithic 1.55 μm GaInNAsSb quantum well passively modelocked lasers[J]. Electron. Lett., 2008, 44(9): 581~582

    [86] K. Merghem, A. Akrout, A. Martinez et al.. Short pulse generation using a passively mode locked single InGaAsP/InP quantum well laser[J]. Opt. Express, 2008, 16(14): 10675~10683

    [87] G. Raybon, P. B. Hansen, U. Koren et al.. Two contact, 1 cm long, monolithic extended cavity laser actively mode-locked at 4.4 GHz[J]. Electron. Lett., 1992, 28(24): 2220~2221

    [88] P. B. Hansen, G. Raybon, U. Koren et al.. InGaAsP monolithic extended-cavity lasers with integrated saturable absorbers for active, passive, and hybrid mode locking at 8.6 GHz[J]. Appl. Phys. Lett., 1993, 62(13): 1445~1447

    [89] K. Sato, K. Wakita, I. Kotaka et al.. Monolithic strained-InGaAsP multiple-quantum-well lasers with integrated electroabsorption modulators for active mode locking[J]. Appl. Phys. Lett., 1994, 65(1): 1~3

    [90] K. Sato, I. Kotaka, Y. Kondo et al.. Actively mode-locked strained-InGaAsP multiquantum-well lasers integrated with electroabsorption modulators and distributed Bragg reflectors[J]. IEEE J. Quant. Electron., 1996, 2(3): 557~565

    [91] K. Sato, I. Kotaka, Y. Kondo et al.. Active mode locking at 50 GHz repetition frequency by half-frequency modulation of monolithic semiconductor lasers integrated with electroabsorption modulators[J]. Appl. Phys. Lett., 1996, 69(18): 2626~2628

    [92] P. B. Hansen, G. Raybon, U. Koren et al.. Monolithic semiconductor soliton transmitter[J]. J. Lightwave Technol., 1995, 13(2): 297~301

    [93] T. Hoshida, L. Hai-Feng, M. Tsuchiya et al.. Subharmonic hybrid mode-locking of a monolithic semiconductor laser[J]. IEEE J. Sel. Top. Quant. Electron., 1996, 2(3): 514~522

    [94] T. Hoshida, H. F. Liu, M. Tsuchiya et al.. Extremely low-amplitude modulation in a subharmonically hybrid mode-locked monolithic semiconductor laser[J]. IEEE Photon. Technol. Lett., 1996, 8(9): 1160~1162

    [95] E. Zielinski, E. Lach, J. Bouayad-Amine et al.. Monolithic multisegment mode-locked DBR laser for wavelength tunable picosecond pulse generation[J]. IEEE J. Sel. Top. Quantum Electron., 1997, 3(2): 230~232

    [96] S. Arahira, Y. Katoh, Y. Ogawa. 20 GHz subpicosecond monolithic modelocked laser diode[J]. Electron. Lett., 2000, 36(5): 454~456

    [97] S. Arahira, Y. Matsui, T. Kunii et al.. Optical short pulse generation at high repetition rate over 80 GHz from a monolithic passively modelocked DBR laser diode[J]. Electron. Lett., 1993, 29(11): 1013~1015

    [98] S. Arahira, Y. Matsui, T. Kunii et al.. Transform-limited optical short-pulse generation at high repetition rate over 40 GHz from a monolithic passive mode-locked DBR laser diode[J]. IEEE Photon. Technol. Lett., 1993, 5(12): 1362~1365

    [99] S. Arahira, Y. Ogawa. Passive and hybrid modelockings in a multi-electrode DBR laser with two gain sections[J]. Electron. Lett., 1995, 31(10): 808~809

    [100] H. F. Liu, S. Arahira, T. Kunii et al.. Generation of wavelength-tunable transform-limited pulses from a monolithic passively mode-locked distributed Bragg reflector semiconductor laser[J]. IEEE Photon. Technol. Lett., 1995, 7(10): 1139~1141

    [101] L. Hai-Feng, S. Arahira, T. Kunii et al.. Tuning characteristics of monolithic passively mode-locked distributed Bragg reflector semiconductor lasers[J]. IEEE J. Quant. Electron., 1996, 32(11): 1965~1975

    [102] M. J. Strain, P. M. Stolarz, M. Sorel. Passively mode-locked lasers with integrated chirped Bragg grating reflectors[J]. IEEE J. Quant. Electron., 2011, 47(4): 492~499

    [103] J. Akbar, L. Hou, M. Haji et al.. High average power (200 mW) 40 GHz mode-locked DBR lasers with integrated tapered optical amplifiers[C]. CLEO, 2012. CW1N.7

    [104] M. C. Wu, Y. K. Chen, T. Tanbun-Ek et al.. Tunable monolithic colliding pulse mode-locked quantum-well lasers[J]. IEEE Photon. Technol. Lett., 1991, 3(10): 874~876

    [105] Y. K. Chen, M. C. Wu, T. Tanbun-Ek et al.. Multicolor single-wavelength sources generated by a monolithic colliding pulse mode-locked quantum well laser[J]. IEEE Photon. Technol. Lett., 1991, 3(11): 971~973

    [106] Y. K. Chen, M. C. Wu, T. Tanbun-Ek et al.. Subpicosecond monolithic colliding-pulse mode-locked multiple quantum well lasers[J]. Appl. Phys. Lett., 1991, 58(12): 1253~1255

    [107] A. Hrknen, J. Rautiainen, L. Orsila et al.. 2 μm mode-locked semiconductor disk laser synchronously pumped using an amplified diode laser[J]. IEEE Photon. Technol. Lett., 2008, 20(13-16): 1332~1334

    [108] A. Hrknen, J. Paajaste, S. Suomalainen et al.. Picosecond passively mode-locked GaSb-based semiconductor disk laser operating at 2 μm[J]. Opt. Lett., 2010, 35(24): 4090~4092

    [109] A. Hrknen, C. Grebing, J. Paajaste et al.. Modelocked GaSb disk laser producing 384 fs pulses at 2 μm wavelength[J]. Electron. Lett., 2011, 47(7): 454~456

    CLP Journals

    [1] Liu Yangyang, Yang Ruixia, Yuan Chunsheng, Wang Yingshun, An Zhenfeng. Study on Fiber Coupling for 974 nm Semiconductor Laser Diode[J]. Chinese Journal of Lasers, 2014, 41(11): 1102003

    Wang Huolei, Kong Liang, Pan Jiaoqing, Xu Tianhong, Ji Wei, Ni Haiqiao, Cui Bifeng, Ding Ying. Recent Progress of Semiconductor Mode-Locked Lasers[J]. Laser & Optoelectronics Progress, 2013, 50(5): 50001
    Download Citation