• Photonic Sensors
  • Vol. 6, Issue 1, 42 (2016)
Ekaterina V. LOGINOVA1, Tatyana V. ZHIDKOVA1, Mikhail A. PROSKURNIN1、2、*, and Vladimir P. ZHAROV3
Author Affiliations
  • 1M.V. Lomonosov Moscow State University, Chemistry Department, Moscow, 119991, Russia
  • 2Agilent Technologies Partner Laboratory / M.V. Lomonosov Moscow State University, Analytical Center, Moscow,119991, Russia
  • 3Philips Classic Laser Laboratories, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
  • show less
    DOI: 10.1007/s13320-015-0267-7 Cite this Article
    Ekaterina V. LOGINOVA, Tatyana V. ZHIDKOVA, Mikhail A. PROSKURNIN, Vladimir P. ZHAROV. Rapid Multi-Wavelength Optical Assessment of Circulating Blood Volume Without a Priori Data[J]. Photonic Sensors, 2016, 6(1): 42 Copy Citation Text show less
    References

    [1] A. Lozhkin, T. Makedonskaya, G. Pakhomova, and O. Loran, “Estimation of the trauma severity degree in injured with associated injuries depending on the blood loss,” Vox Sanguinis, 2010, 99(Suppl 1): 435 436.

    [2] D. M. Jr. Takanishi, E. N. Biuk-Aghai, M. Yu, F. Lurie, H. Yamauchi, H. C. Ho, et al., “The availability of circulating blood volume values alters fluid management in critically ill surgical patients,” American Journal of Surgery, 2009, 197(2): 232 237.

    [3] W. Baulig, E. O. Bernhard, D. Bettex, D. Schmidlin, and E. R. Schmid, “Cardiac output measurement by pulse dye densitometry in cardiac surgery,” Anaesthesia, 2005, 60(10): 968 973.

    [4] M. Kroon, A. B. Groeneveld, and Y. M. Smulders, “Cardiac output measurement by pulse dye densitometry: comparison with pulmonary artery thermodilution in post-cardiac surgery patients,” Journal of Clinical Monitoring and Computing, 2005, 19(6): 395 399.

    [5] S. Henschen, M. W. Busse, S. Zisowsky, and B. Panning, “Determination of plasma volume and total blood volume using indocyanine green: a short review,” Journal of Medicine, 1993, 24(1): 10 27.

    [6] L. Donner and V. Maly, “Total blood volume in some blood diseases. II. results in pernicious anemia, anemia following hemorrhage, polycythemia vera, secondary polyglobulia and leukemia,” Sbornik Lekarsky, 1955, 57(5): 125 136.

    [7] L. K. Vricella, J. M. Louis, E. Chien, and B. M. Mercer, “Blood volume determination in obese and normal-weight gravidas: the hydroxyethyl starch method,” American Journal of Obstetrics and Gynecology, 2015, 213(3): 408.e1 408.e6.

    [8] A. Joffe, N. Khandelwal, M. Hallman, and M. Treggiari, “Assessment of circulating blood volume with fluid administration targeting euvolemia or hypervolemia,” Neurocritical Care, 2015, 22(1): 82 88.

    [9] D. Konno, R. Nishino, Y. Ejima, E. Ohnishi, K. Sato, and S. Kurosawa, “Assessment of the perioperative factors contributing to the hemodynamic changes during surgery in ten patients with pheochromocytoma,” Masui. Japanese Journal of Anesthesiology, 2013, 62(4): 421 425.

    [10] K. Tanaka, T. Sato, C. Kondo, I. Yada, H. Yuasa, M. Kusagawa, et al., “Hematological problems during the use of cardiac assist devices: clinical experiences in Japan,” Artificial Organs, 1992, 16(2): 182 188.

    [11] N. M. Keith, L. G. Rowntree, and J. T. Geraghty, “A method for the determination of plasma and blood volume,” Archives of Internal Medicine, 1915, 16(4): 547 557.

    [12] W. Jegier, J. Maclaurin, W. Blankenship, and J. Lind, “Comparative study of blood volume estimation in the newborn infant using I-131 labeled human serum albumin (Ihsa) and T-1824,” Scandinavian Journal of Clinical and Laboratory Investigation, 1964, 16: 125 132.

    [13] N. N. Uglova, A. I. Volozhin, and V. E. Potkin, “Method for determination of the circulating blood volume with Evans blue T-1824,” Patologicheskaia Fiziologiia i Eksperimentalnaia Terapiia, 1972, 16(2): 80 82.

    [14] S. A. Glants and V. V. Shevchuk, “A micromethod for the determination of blood volume in laboratory animals,” Laboratornoe Delo, 1963, 16: 49.

    [15] O. A. Kovalev and V. N. Grishanov, “Determination of the volume of circulating blood by using Evans blue dye,” Laboratornoe Delo, 1976, 11: 664 667.

    [16] C. M. Gillen, A. Takamata, G. W. Mack, and E. R. Nadel, “Measurement of plasma volume in rats with use of fluorescent-labeled albumin molecules,” Journal of Applied Physiology, 1994, 76(1): 485 489.

    [17] G. R. Tudhope and G. M. Wilson, “A comparison of 86Rb, 32P and 51Cr as labels for red blood cells,” Journal of Physiology, 1955, 128(3): 61 62.

    [18] T. P. Sivachenko, V. K. Kalina, V. P. Ishchenko, A. K. Belous, and V. I. Kapustnik, “Repeated semi-automatic determination of circulating blood volume,” Vrachebnoe Delo, 1977, (7): 25 28.

    [19] S. J. Gray and K. Sterling, “Determination of circulating red cell volume by radioactive chromium,” Science, 1950, 112(2902): 179 180.

    [20] B. M. Datsenko, N. I. Pilipenko, V. I. Gubskii, and R. A. Sherlanov, “The determination of the volume of circulating plasma using the indicator T-1824,” Laboratornoe Delo, 1990, 11: 32 34.

    [21] J. G. Gibson, A. M. Seligman, W. C. Peacock, J. C. Aub, J. Fine, and R. D. Evans, “The distribution of red cells and plasma in large and minute vessels of the normal dog, determined by radioactive isotopes of iron and iodine,” Journal of Clinical Investigation, 1946, 25(6): 848 857.

    [22] V. K. Modestov and A. T. Tsygankov, “Thyroid function tests using triiodothyronine labeled with I-131,” Meditsinskaia Radiologiia, 1965, 10: 11 13.

    [23] I. A. Frid, V. I. Stoliarov, A. I. Evtiukhin, and M. I. Bernshtein, “Hemodynamic indices and the volume of circulating blood in the surgical treatment of cancer of the esophagus and cardial portion of the stomach,” Vestnik Khirurgii Imeni I. I. Grekova, 1976, 117(10): 92 96.

    [24] M. Haruna, K. Kumon, N. Yahagi, Y. Watanabe, Y. Ishida, N. Kobayashi, and T. Aoyagi, “Blood volume measurement at the bedside using ICG pulse spectrophotometry,” Anesthesiology, 1998, 89(6): 1322 1328.

    [25] T. Imai, K. Takahashi, H. Fukura, and Y. Morishita, “Measurement of cardiac output by pulse dye densitometry using indocyanine green: a comparison with the thermodilution method,” Anesthesiology, 1997, 87(4): 816 822.

    [26] J. A. Tichy, M. Loucka, Z. M. Trefny, M. Hojerova, J. Svacinka, J. Muller, et al., “New clearance evaluation method for hepatological diagnostics,” Physiological Research, 2009, 58(2): 287 292.

    [27] C. K. Hofer, M. T. Ganter, and A. Zollinger, “What technique should I use to measure cardiac output ,” Current Opinion in Critical Care, 2007, 13(3): 308 317.

    [28] R. W. Goy, J. W. Chiu, and C. C. Loo, “Pulse dye densitometry: a novel bedside monitor of circulating blood volume,” Annals of the Academy of Medicine, Singapore, 2001, 30(2): 192 198.

    [29] H. Sugimoto, O. Okochi, M. Hirota, N. Kanazumi, S. Nomoto, S. Inoue, et al., “Early detection of liver failure after hepatectomy by indocyanine green elimination rate measured by pulse dyedensitometry,” Journal of Hepato-Biliary- Pancreatic Surgery, 2006, 13(6): 543 548.

    [30] R. G. Hoff, G. W. van Dijk, A. Algra, C. J. Kalkman, and G. J. Rinkel, “Fluid balance and blood volume measurement after aneurysmal subarachnoid hemorrhage,” Neurocritical Care, 2008, 8(3): 391 397.

    [31] K. Sha, M. Shimokawa, M. Morii, K. Kikumoto, S. Inoue, K. Kishi, et al., “Optimal dose of indocyanine-green injected from the peripheral vein in cardiac output measurement by pulse dyedensitometry,” Masui. Japanese Journal of Anesthesiology, 2000, 49(2): 172 176.

    [32] N. Taguchi, S. Nakagawa, K. Miyasaka, M. Fuse, and T. Aoyagi, “Cardiac output measurement by pulse dye densitometry using three wavelengths,” Pediatric Critical Care Medicine, 2004, 5(4): 343 350.

    [33] Y. Fujita, T. Yamamoto, M. Fuse, N. Kobayashi, S. Takeda, and T. Aoyagi, “Pulse dye densitometry using indigo carmine is useful for cardiac output measurement, but not for circulating blood volume measurement,” European Journal of Anaesthesiology, 2004, 21(8): 632 637.

    [34] T. Imai, C. Mitaka, T. Nosaka, A. Koike, S. Ohki, Y. Isa, et al., “Accuracy and repeatability of blood volume measurement by pulse dye densitometry compared to the conventional method using 51Cr-labeled red blood cells,” Intensive Care Medicine, 2000, 26(9): 1343 1349.

    [35] T. Kunihara, Y. Wakamatsu, A. Adachi, M. Koyama, N. Shiiya, S. Sasaki, et al., “Clinical evaluation of hepatic blood flow and oxygen metabolism during thoracoabdominal aortic surgery using pulse dye-densitometry combined with hepatic venous oxygen saturation,” Kyobu Geka. Japanese Journal of Thoracic Surgery, 2000, 53(7): 551 557.

    [36] T. Hori, S. Yagi, T. Iida, K. Taniguchi, K. Yamagiwa, C. Yamamoto, et al., “Stability of cirrhotic systemic hemodynamics ensures sufficient splanchnic blood flow after living-donor liver transplantation in adult recipients with liver cirrhosis,” World Journal of Gastroenterology, 2007, 13(44): 5918 5925.

    [37] H. Akita, Y. Sasaki, T. Yamada, K. Gotoh, H. Ohigashi, H. Eguchi, et al., “Real-time intraoperative assessment of residual liver functional reserve using pulse dye densitometry,” World Journal of Surgery, 2008, 32(12): 2668 2674.

    [38] R. E. Stauber, D. Wagner, V. Stadlbauer, S. Palma, G. Gurakuqi, D. Kniepeiss, et al., “Evaluation of indocyanine green clearance and model for end-stage liver disease for estimation of short-term prognosis in decompensated cirrhosis,” Liver International: Official Journal of the International Association for the Study of the Liver, 2009, 29(10): 1516 1520.

    [39] T. Takazawa, K. Nishikawa, I. Watanabe, and F. Goto, “Preoperative evaluation of hemodynamics using indocyanine green clearance meter in patients with peritonitis from gastrointestinal perforation,” Masui the Japanese Journal of Anesthesiology, 2005, 54(3): 260 264.

    [40] R. Hoff, G. Rinkel, B. Verweij, A. Algra, and C. Kalkman, “Blood volume measurement to guide fluid therapy after aneurysmal subarachnoid hemorrhage: a prospective controlled study,” Stroke, 2009, 40(7): 2575 2577.

    [41] O. Okochi, T. Kaneko, H. Sugimoto, S. Inoue, S. Takeda, and A. Nakao, “ICG pulse spectrophotometry for perioperative liver function in hepatectomy,” Journal of Surgical Research, 2002, 103(1): 109 113.

    [42] E. C. Bradley and J. W. Barr, “Determination of blood volume using indocyanine green (cardio-green) dye,” Life Sciences, 1968, 7(17): 1001 1007.

    [43] H. Fukuda, M. Kawamoto, and O. Yuge, “A comparison of finger and nose probes in pulse dye-densitometry measurements of cardiac output, blood volume and mean transit time,” Masui the Japanese Journal of Anesthesiology, 2001, 50(12): 1351 1356.

    [44] F. Bremer, A. Schiele, and K. Tschaikowsky, “Cardiac output measurement by pulse dye densitometry: a comparison with the Fick's principle and thermodilution method,” Intensive Care Medicine, 2002, 28(4): 399 405.

    [45] D. A. Nedosekin, E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov, “Super-resolution nonlinear photothermal microscopy,” Small, 2014, 10(1): 135 142.

    [46] D. A. Nedosekin, M. Sarimollaoglu, E. I. Galanzha, R. Sawant, V. P. Torchilin, V. V. Verkhusha, et al., “Synergy of photoacoustic and fluorescence flow cytometry of circulating cells with negative and positive contrasts,” Journal of Biophotonics, 2013, 6(5): 425 434.

    [47] Y. A. Menyaev, D. A. Nedosekin, M. Sarimollaoglu, M. A. Juratli, E. I. Galanzha, V. V. Tuchin, et al., “Optical clearing in photoacoustic flow cytometry,” Biomedical Optics Express, 2013, 4(12): 3030 3041.

    [48] M. A. Proskurnin, T. V. Zhidkova, D. S. Volkov, M. Sarimollaoglu, E. I. Galanzha, D. Mock, et al., “In vivo multispectral photoacoustic and photothermal flow cytometry with multicolor dyes: A potential for real-time assessment of circulation, dye-cell interaction, and blood volume,” Cytometry Part A the Journal of the International Society for Analytical Cytology, 2011, 79A(10): 834 847.

    [49] S. E. Bialkowski, Photothermal spectroscopy methods for chemical analysis. New York: Wiley-Interscience, 1996.

    [50] L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nature Photonics, 2009, 3(9): 503 509.

    [51] S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, et al., “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Letters, 2009, 9(8): 2825 2831.

    [52] V. P. Zharov and V. S. Letokhov, Laser optoacoustic spectroscopy. Berlin-Heidelberg: Springer-Verlag, 1986.

    [53] V. P. Zharov, “Laser optoacoustic spectroscopy in chromatography,” in Laser analytical spectrochemistry, Boston, MA: Bristol, pp. 229 271, 1986.

    [54] M. Harada, M. Shibata, T. Kitamori, and T. Sawada, “Application of coaxial beam photothermal microscopy to the analysis of a single biological cell in water,” Analytica Chimica Acta, 1995, 299(3): 343 347.

    [55] L. V. Wang, Photoacoustic imaging and spectroscopy. New York: Taylor & Francis/CRC Press, 2009.

    [56] M. A. Proskurnin, “Photothermal spectroscopy, ” in Laser spectroscopy for sensing: fundamentals, techniques and applications. Cambridge: Woodhead Publ Ltd, 2014, pp. 313 361.

    [57] V. P. Zharov and D. O. Lapotko, “Photothermal imaging of nanoparticles and cells,” IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(4): 733 751.

    [58] I. Y. Petrova, R. O. Esenaliev, Y. Y. Petrov, H. P. Brecht, C. H. Svensen, J. Olsson, et al., “Optoacoustic monitoring of blood hemoglobin concentration: a pilot clinical study,” Optics Letters, 2005, 30(13): 1677 1679.

    [59] Y. Y. Petrov, I. Y. Petrova, I. A. Patrikeev, R. O. Esenaliev, and D. S. Prough, “Multiwavelength optoacoustic system for noninvasive monitoring of cerebral venous oxygenation: a pilot clinical test in the internal jugular vein,” Optics Letters, 2006, 31(12): 1827 1829.

    [60] R. G. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Lasers in Medical Science, 2006, 21(3): 134 139.

    [61] S. Ermilov, A. Stein, A. Conjusteau, R. Gharieb, R. Lacewell, T. Miller, et al., “2007 Detection and noninvasive diagnostics of breast cancer with 2-color laser optoacoustic imaging system, ” in Proc. SPIE, vol. 6437, pp. 643703 643711, 2007.

    [62] S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, et al., “2007 First clinical trials of the Twente photoacoustic mammoscope (PAM),” in Proc. SPIE, vol. 6629, pp. 662912 662917, 2007.

    [63] D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, et al., “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nature Photonics, 2009, 3(7): 412 417.

    [64] V. V. Tuchin, A. Tárnok, and V. P. Zharov, “In vivo flow cytometry: a horizon of opportunities,” Cytometry Part A, 2011, 79A(10): 737 745.

    [65] A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, et al., “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” Journal of Biophotonics, 2010, 3(12): 791 806.

    [66] E. I. Galanzha, M. S. Kokoska, E. V. Shashkov, J. W. Kim, V. V. Tuchin, and V. P. Zharov, “In vivo fiber-based multicolor photoacoustic detection and photothermal purging of metastasis in sentinel lymph nodes targeted by nanoparticles,” Journal of Biophotonics, 2009, 2(8 9): 528 539.

    [67] E. I. Galanzha, J. W. Kim, and V. P. Zharov, “Nanotechnology-based molecular photoacoustic and photothermal flow cytometry platform for in-vivo detection and killing of circulating cancer stem cells,” Journal of Biophotonics, 2009, 2(12): 725 735.

    [68] V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J. W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” Journal of Biomedical Optics, 2007, 12(5): 051503-1 051503-14.

    [69] A. D. Modestov, Y. V. Pleskov, V. P. Varnin, and I. G. Teremetskaya, “Synthetic semiconductor diamond electrodes: a study of electrochemical activity in a redox system solution,” Russian Journal of Electrochemistry, 1997, 33(1): 55 60.

    [70] E. I. Galanzha and V. P. Zharov, “In vivo photoacoustic and photothermal cytometry for monitoring multiple blood rheology parameters,” Cytometry Part A, 2011, 79A(10): 746 757.

    [71] S. A. Lozhkin, “Depth of Boolean functions in a complete basis,” Vestnik Moskovskogo Universiteta Seriya 1 Matematika Mekhanika, 1996, 51(2): 80 83.

    [72] A. Brusnichkin, D. Nedosekin, E. Ryndina, M. Proskurnin, E. Gleb, D. Lapotko, et al., “Determination of various hemoglobin species with thermal-lens spectrometry,” Moscow University Chemistry Bulletin, 2009, 64(1): 45 54.

    [73] M. A. Proskurnin, A. G. Abroskin, and D. Y. Radushkevich, “A dual-beam thermal lens spectrometer for flow analysis,” Journal of Analytical Chemistry, 1999, 54(1): 91 97, 1999.

    [74] A. A. Riley, Y. Arakawa, S. Worley, B. W. Duncan, and K. Fukamachi, “Circulating blood volumes: a review of measurement techniques and a meta-analysis in children,” ASAIO Journal, 2010, 56(3): 260 264.

    [75] J. Karpinska, A. Sokol, and M. Rozko, “Applicability of derivative spectrophotometry, bivariate calibration algorithm, and the vierordt method for simultaneous determination of ranitidine and amoxicillin in their binary mixtures,” Analytical Letters, 2009, 42(8): 1203 1218.

    [76] E. Dinc and F. Onur, “Comparative study of the ratio spectra derivative spectrophotometry, derivative spectrophotometry and Vierordt's method applied to the analysis of oxfendazole and oxyclozanide in a veterinary formulation,” Analusis, 1997, 25(3): 55 59.

    [77] M. A. Yaseen, J. Yu, B. Jung, M. S. Wong, and B. Anvari, “Biodistribution of encapsulated indocyanine green in healthy mice,” Molecular Pharmaceutics, 2009, 6(5): 1321 1332.

    [78] V. Saxena, M. Sadoqi, and J. Shao, “Enhanced photo-stability, thermal-stability and aqueous-stability of indocyanine green in polymeric nanoparticulate systems,” Journal of Photochemistry and Photobiology. B: Biology, 2004, 74(1): 29 38.

    [79] N. M. Shestakov, “Complexity and inadequacy of current methods of determining circulating blood volume and the feasibility of a simpler and faster method of determining it,” Terapevticheskii Arkhiv, 1977, 49(3): 115 120.

    [80] C. Tsopelas and R. Sutton, “Why certain dyes are useful for localizing the sentinel lymph node,” Journal of Nuclear Medicine, 2002, 43(10): 1377 1382.

    [81] A. B. Dawson, H. M. Evans, and G. H. Whipple, “Blood volume studies: III. behavior of large series of dyes introduced into the circulating blood,” American Journal of Physiology, 1920, 51(2): 232 256.

    [82] K. Shoemaker, J. Rubin, G. L. Zumbro, and R. Tackett, “Evans blue and gentian violet: alternatives to methylene blue as a surgical marker dye,” Journal of Thoracic and Cardiovascular Surgery, 1996, 112(2): 542 544.

    [83] A. Smirnova, M. A. Proskurnin, S. N. Bendrysheva, D. A. Nedosekin, A. Hibara, and T. Kitamori, “Thermooptical detection in microchips: From macro- to micro-scale with enhanced analytical parameters,” Electrophoresis, 2008, 29(13): 2741 2753.

    [84] M. A. Proskurnin and A. G. Abroskin, “Optimization of optical system parameters in dual-beam thermal lens spectrometry,” Journal of Analytical Chemistry, 1999, 54(5): 401 408.

    [85] D. A. Nedosekin, M. Sarimollaoglu, E. V. Shashkov, E. I. Galanzha, and V. P. Zharov, “Ultra-fast photoacoustic flow cytometry with a 0.5 MHz pulse repetition rate nanosecond laser,” Optics Express, 2010, 18(8): 8605 8620.

    [86] D. A. Nedosekin, E. V. Shashkov, E. I. Galanzha, L. Hennings, and V. P. Zharov, “Photothermal multispectral image cytometry for quantitative histology of nanoparticles and micrometastasis in intact, stained and selectively burned tissues,” Cytometry A, 2010, 77(11): 1049 1058.

    [87] E. V. Shashkov, M. Everts, E. I. Galanzha, and V. P. Zharov, “Quantum dots as multimodal photoacoustic and photothermal contrast agents,” Nano Letters, 2008, 8(11): 3953 3958.

    [88] V. P. Zharov, E. I. Galanzha, Y. Menyaev, and V. V. Tuchin, “In vivo high-speed imaging of individual cells in fast blood flow,” Journal of Biomedical Optics, 2006, 11(5): 054034.

    [89] V. P. Zharov, E. I. Galanzha, E. V. Shashkov, N. G. Khlebtsov, and V. V. Tuchin, “In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents,” Optics Letters, 2006, 31(24): 3623 3625.

    [90] V. P. Zharov, E. I. Galanzha, and V. V. Tuchin, “Photothermal flow cytometry in vitro for detection and imaging of individual moving cells,” Cytometry A, 2007, 71(4): 191 206.

    [91] S. E. Bialkowski, Photothermal spectroscopy methods for chemical analysis. New York: A Wiley-Interscience publication, 1996.

    [92] M. A. Proskurnin and M. E. Volkov, “Mode-mismatched dual-beam differential thermal lensing with optical scheme design optimized using expert estimation for analytical measurements,” Applied Spectroscopy, 2008, 62(4): 439 449.

    [93] S. E. Bialkowski, X. Gu, P. E. Poston, and L. S. Powers, “Pulsed-laser excited differential photothermal deflection spectroscopy,” Applied Spectroscopy, 1992, 46(9): 1335 1345.

    [94] A. Y. Luk’yanov, G. B. Vladykin, M. A. Novikov, and Y. I. Yashin, “Comparison of the capability limits of some optical detectors for liquid chromatography,” Journal of Analytical Chemistry, 1999, 54(7): 633 638.

    [95] P. Roriz, A. Ramos, J. Santos, and J. Sim es, “Fiber optic intensity-modulated sensors: a review in biomechanics,” Photonic Sensors, 2012, 2(4): 315 330.

    Ekaterina V. LOGINOVA, Tatyana V. ZHIDKOVA, Mikhail A. PROSKURNIN, Vladimir P. ZHAROV. Rapid Multi-Wavelength Optical Assessment of Circulating Blood Volume Without a Priori Data[J]. Photonic Sensors, 2016, 6(1): 42
    Download Citation