• Photonics Research
  • Vol. 9, Issue 6, 968 (2021)
Chandrasekar Perumal Veeramalai1, Shuai Feng1, Xiaoming Zhang1、5、*, S. V. N. Pammi2, Vincenzo Pecunia3, and Chuanbo Li1、4、6、*
Author Affiliations
  • 1School of Science, Minzu University of China, Beijing 100081, China
  • 2Department of Materials Science and Engineering, Chungnam National University, 34134 Daejeon, Republic of Korea
  • 3Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
  • 4Optoelectronics Research Center, Minzu University of China, Beijing 100081, China
  • 5e-mail: xmzhang@muc.edu.cn
  • 6e-mail: cbli@muc.edu.cn
  • show less
    DOI: 10.1364/PRJ.418450 Cite this Article Set citation alerts
    Chandrasekar Perumal Veeramalai, Shuai Feng, Xiaoming Zhang, S. V. N. Pammi, Vincenzo Pecunia, Chuanbo Li. Lead–halide perovskites for next-generation self-powered photodetectors: a comprehensive review[J]. Photonics Research, 2021, 9(6): 968 Copy Citation Text show less
    References

    [1] J. Yu, G. Liu, C. Chen, Y. Li, M. Xu, T. Wang, G. Zhao, L. Zhang. Perovskite CsPbBr3 crystals: growth and applications. J. Mater. Chem. C, 8, 6326-6341(2020).

    [2] B. Murali, H. K. Kolli, J. Yin, R. Ketavath, O. M. Bakr, O. F. Mohammed. Single crystals: the next big wave of perovskite optoelectronics. ACS Mater. Lett., 2, 184-214(2020).

    [3] F. Mei, D. Sun, S. Mei, J. Feng, Y. Zhou, J. Xu, X. Xiao. Recent progress in perovskite-based photodetectors: the design of materials and structures. Adv. Phys. X, 4, 1592709(2019).

    [4] H. Wang, D. H. Kim. Perovskite-based photodetectors: materials and devices. Chem. Soc. Rev., 46, 5204-5236(2017).

    [5] B. Saparov, D. B. Mitzi. Organic-inorganic perovskites: structural versatility for functional materials design. Chem. Rev., 116, 4558-4596(2016).

    [6] M. A. Green, A. Ho-Baillie, H. J. Snaith. The emergence of perovskite solar cells. Nat. Photonics, 8, 506-514(2014).

    [7] G. Konstantatos, E. H. Sargent. Nanostructured materials for photon detection. Nat. Nanotechnol., 5, 391-400(2010).

    [8] F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, M. Polini. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 9, 780-793(2014).

    [9] Z. L. Wang. Self-powered nanosensors and nanosystems. Adv. Mater., 24, 280-285(2012).

    [10] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami. Internet of things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst., 29, 1645-1660(2013).

    [11] Y. Yang, W. Guo, J. Qi, J. Zhao, Y. Zhang. Self-powered ultraviolet photodetector based on a single Sb-doped ZnO nanobelt. Appl. Phys. Lett., 97, 223113(2010).

    [12] Y.-Q. Bie, Z.-M. Liao, H.-Z. Zhang, G.-R. Li, Y. Ye, Y. B. Zhou, J. Xu, Z.-X. Qin, L. Dai, D.-P. Yu. Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions. Adv. Mater., 23, 649-653(2011).

    [13] X. Li, L. Tao, Z. Chen, H. Fang, X. Li, X. Wang, J.-B. Xu, H. Zhu. Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev., 4, 021306(2017).

    [14] C. Li, Q. Cao, F. Wang, Y. Xiao, Y. Li, J.-J. Delaunay, H. Zhu. Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev., 47, 4981-5037(2018).

    [15] M. Dai, H. Chen, R. Feng, W. Feng, Y. Hu, H. Yang, G. Liu, X. Chen, J. Zhang, C.-Y. Xu, P. Hu. A dual-band multilayer InSe self-powered photodetector with high performance induced by surface plasmon resonance and asymmetric Schottky junction. ACS Nano, 12, 8739-8747(2018).

    [16] X. Zhou, X. Hu, J. Yu, S. Liu, Z. Shu, Q. Zhang, H. Li, Y. Ma, H. Xu, T. Zhai. 2D layered material-based van der Waals heterostructures for optoelectronics. Adv. Funct. Mater., 28, 1706587(2018).

    [17] J. Miao, F. Zhang. Recent progress on highly sensitive perovskite photodetectors. J. Mater. Chem. C, 7, 1741-1791(2019).

    [18] L. Su, W. Yang, J. Cai, H. Chen, X. Fang. Self-powered ultraviolet photodetectors driven by built-in electric field. Small, 13, 1701687(2017).

    [19] W. Tian, Y. Wang, L. Chen, L. Li. Self-powered nanoscale photodetectors. Small, 13, 1701848(2017).

    [20] M. Liu, M. B. Johnston, H. J. Snaith. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501, 395-398(2013).

    [21] J. Huang, Y. Yuan, Y. Shao, Y. Yan. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater., 2, 17042(2017).

    [22] L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, M. Grätzel. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc., 134, 17396-17399(2012).

    [23] A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T.-W. Wang, S. D. Stranks, H. J. Snaith, R. J. Nicholas. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nat. Phys., 11, 582-587(2015).

    [24] S. Torabi, F. Jahani, V. I. Severen, C. Kanimozhi, S. Patil, R. W. A. Havenith, R. C. Chiechi, L. Lutsen, D. J. M. Vanderzande, T. J. Cleij, J. C. Hummelen, J. A. Koster. Strategy for enhancing the dielectric constant of organic semiconductors without sacrificing charge carrier mobility and solubility. Adv. Funct. Mater., 25, 150-157(2015).

    [25] T. M. Brenner, D. A. Egger, L. Kronik, G. Hodes, D. Cahen. Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater., 1, 15007(2016).

    [26] D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 347, 519-522(2015).

    [27] G. R. Yettapu, D. Talukdar, S. Sarkar, A. Swarnkar, A. Nag, P. Ghosh, P. Mandal. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths. Nano Lett., 16, 4838-4848(2016).

    [28] M. I. Saidaminov, M. A. Haque, J. Almutlaq, S. Sarmah, X.-H. Miao, R. Begum, A. A. Zhumekenov, I. Dursun, N. Cho, B. Murali, O. F. Mohammed, T. Wu, O. M. Bakr. Inorganic lead halide perovskite single crystals: phase-selective low-temperature growth, carrier transport properties, and self-powered photodetection. Adv. Opt. Mater., 5, 1600704(2017).

    [29] Y. He, L. Matei, H. J. Jung, K. M. McCall, M. Chen, C. C. Stoumpos, Z. Liu, J. A. Peters, D. Y. Chung, B. W. Wessels, M. R. Wasielewski, V. P. Dravid, A. Burger, M. G. Kanatzidis. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat. Commun., 9, 1609(2018).

    [30] A. Fakharuddin, L. Schmidt-Mende, G. Garcia-Belmonte, R. Jose, I. Mora-Sero. Interfaces in perovskite solar cells. Adv. Energy Mater., 7, 1700623(2017).

    [31] T. Leijtens, G. E. Eperon, N. K. Noel, S. N. Habisreutinger, A. Petrozza, H. J. Snaith. Stability of metal halide perovskite solar cells. Adv. Energy Mater., 5, 1500963(2015).

    [32] A. K. Jena, A. Kulkarni, T. Miyasaka. Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev., 119, 3036-3103(2019).

    [33] Y. Zhou, Y. Zhao. Chemical stability and instability of inorganic halide perovskites. Energy Environ. Sci., 12, 1495-1511(2019).

    [34] Y. Lin, Y. Bai, Y. Fang, Q. Wang, Y. Deng, J. Huang. Suppressed ion migration in low-dimensional perovskites. ACS Energy Lett., 2, 1571-1572(2017).

    [35] H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, W. Zhang. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett., 5, 1511-1515(2014).

    [36] A. Fakharuddin, U. Shabbir, W. Qiu, T. Iqbal, M. Sultan, P. Heremans, L. Schmidt-Mende. Inorganic and layered perovskites for optoelectronic devices. Adv. Mater., 31, 1807095(2019).

    [37] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci., 9, 1989-1997(2016).

    [38] J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S. M. Cho, N.-G. Park. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater., 5, 1501310(2015).

    [39] F. Zhuge, Z. Zheng, P. Luo, L. Lv, Y. Huang, H. Li, T. Zhai. Nanostructured materials and architectures for advanced infrared photodetection. Adv. Mater. Technol., 2, 1700005(2017).

    [40] Z. Bai, X. Chen, X. Yan, X. Zheng, Z. Kang, Y. Zhang. Self-powered ultraviolet photodetectors based on selectively grown ZnO nanowire arrays with thermal tuning performance. Phys. Chem. Chem. Phys., 16, 9525-9529(2014).

    [41] X. Chen, K. Liu, Z. Zhang, C. Wang, B. Li, H. Zhao, D. Zhao, D. Shen. Self-powered solar-blind photodetector with fast response based on Au/β-Ga2O3 nanowires array film Schottky junction. ACS Appl. Mater. Interfaces, 8, 4185-4191(2016).

    [42] L. Duan, F. He, Y. Tian, B. Sun, J. Fan, X. Yu, L. Ni, Y. Zhang, Y. Chen, W. Zhang. Fabrication of self-powered fast-response ultraviolet photodetectors based on graphene/ZnO:Al nanorod-array-film structure with stable Schottky barrier. ACS Appl. Mater. Interfaces, 9, 8161-8168(2017).

    [43] M. Hussain, S. Aftab, S. H. A. Jaffery, A. Ali, S. Hussain, D. N. Cong, R. Akhtar, Y. Seo, J. Eom, P. Gautam, H. Noh, J. Jung. Asymmetric electrode incorporated 2D GeSe for self-biased and efficient photodetection. Sci. Rep., 10, 9374(2020).

    [44] L. Mi, H. Wang, Y. Zhang, X. Yao, Y. Chang, G. Li, G. Li, Y. Jiang. High performance visible–near-infrared PbS-quantum-dots/indium Schottky diodes for photodetectors. Nanotechnology, 28, 055202(2016).

    [45] D. Wu, Y. Jiang, Y. Zhang, Y. Yu, Z. Zhu, X. Lan, F. Li, C. Wu, L. Wang, L. Luo. Self-powered and fast-speed photodetectors based on CdS:Ga nanoribbon/Au Schottky diodes. J. Mater. Chem., 22, 23272-23276(2012).

    [46] D. Li, G. Dong, W. Li, L. Wang. High performance organic-inorganic perovskite-optocoupler based on low-voltage and fast response perovskite compound photodetector. Sci. Rep., 5, 7902(2015).

    [47] P. V. Chandrasekar, S. Yang, J. Hu, M. Sulaman, M. I. Saleem, Y. Tang, Y. Jiang, B. Zou. A one-step method to synthesize CH3NH3PbI3:MoS2 nanohybrids for high-performance solution-processed photodetectors in the visible region. Nanotechnology, 30, 085707(2019).

    [48] R. Zhi, J. Hu, S. Yang, C. Perumal Veeramalai, Z. Zhang, M. I. Saleem, M. Sulaman, Y. Tang, B. Zou. A facile method to synthesize two-dimensional CsPb2Br5 nano-/micro-sheets for high-performance solution-processed photodetectors. J. Alloys. Compd., 824, 153970(2020).

    [49] C. Perumal Veeramalai, S. Yang, R. Zhi, M. Sulaman, M. I. Saleem, Y. Cui, Y. Tang, Y. Jiang, L. Tang, B. Zou. Solution-processed. Adv. Opt. Mater., 8, 2000215(2020).

    [50] L. Peng, L. Hu, X. Fang. Energy harvesting for nanostructured self-powered photodetectors. Adv. Funct. Mater., 24, 2591-2610(2014).

    [51] Z. L. Wang. The new field of photopiezotronics. Mater. Today, 10, 20-28(2007).

    [52] G. Maculan, A. D. Sheikh, A. L. Abdelhady, M. I. Saidaminov, M. A. Haque, B. Murali, E. Alarousu, O. F. Mohammed, T. Wu, O. M. Bakr. CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector. J. Phys. Chem. Lett., 6, 3781-3786(2015).

    [53] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 347, 967-970(2015).

    [54] Z. Lian, Q. Yan, Q. Lv, Y. Wang, L. Liu, L. Zhang, S. Pan, Q. Li, L. Wang, J.-L. Sun. High-performance planar-type photodetector on (100) facet of MAPbI3 single crystal. Sci. Rep., 5, 16563(2015).

    [55] J. Shamsi, A. L. Abdelhady, S. Accornero, M. Arciniegas, L. Goldoni, A. R. S. Kandada, A. Petrozza, L. Manna. N-methylformamide as a source of methylammonium ions in the synthesis of lead halide perovskite nanocrystals and bulk crystals. ACS Energy Lett., 1, 1042-1048(2016).

    [56] M. Cao, J. Tian, Z. Cai, L. Peng, L. Yang, D. Wei. Perovskite heterojunction based on CH3NH3PbBr3 single crystal for high-sensitive self-powered photodetector. Appl. Phys. Lett., 109, 233303(2016).

    [57] X. Zhang, C. Ji, X. Liu, S. Wang, L. Li, Y. Peng, Y. Yao, M. Hong, J. Luo. Solution-grown large-sized single-crystalline 2D/3D perovskite heterostructure for self-powered photodetection. Adv. Opt. Mater., 8, 2000311(2020).

    [58] J. Ding, H. Fang, Z. Lian, J. Li, Q. Lv, L. Wang, J.-L. Sun, Q. Yan. A self-powered photodetector based on a CH3NH3PbI3 single crystal with asymmetric electrodes. CrystEngComm, 18, 4405-4411(2016).

    [59] P. A. Shaikh, D. Shi, J. R. D. Retamal, A. D. Sheikh, M. A. Haque, C.-F. Kang, J.-H. He, O. M. Bakr, T. Wu. Schottky junctions on perovskite single crystals: light-modulated dielectric constant and self-biased photodetection. J. Mater. Chem. C, 4, 8304-8312(2016).

    [60] X. Zhang, X. Dong, S. Wang, H. Liu, W. Hu, X. Li. A self-powered photodetector based on polarization-driven in CH3NH3PbI3 single crystal (100) plane. Chem. Eng. J., 404, 125957(2020).

    [61] R. Yan, D. Gargas, P. Yang. Nanowire photonics. Nat. Photonics, 3, 569-576(2009).

    [62] Y. Fu, H. Zhu, J. Chen, M. P. Hautzinger, X. Y. Zhu, S. Jin. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater., 4, 169-188(2019).

    [63] D. Chen, X. Chen. Luminescent perovskite quantum dots: synthesis, microstructures, optical properties and applications. J. Mater. Chem. C, 7, 1413-1446(2019).

    [64] F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano, 9, 4533-4542(2015).

    [65] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett., 15, 3692-3696(2015).

    [66] Y. Wang, L. Song, Y. Chen, W. Huang. Emerging new-generation photodetectors based on low-dimensional halide perovskites. ACS Photon., 7, 10-28(2020).

    [67] M. S. Imran, Y. Shengyi, Z. Ruonan, L. Hailong, S. Muhammad, V. Perumal, Z. Zhenheng, B. Attia, Z. Bingsuo. Self-powered, all-solution processed, trilayer heterojunction perovskite-based photodetectors. Nanotechnology, 31, 254001(2020).

    [68] H. Zhou, Z. Song, C. R. Grice, C. Chen, J. Zhang, Y. Zhu, R. Liu, H. Wang, Y. Yan. Self-powered CsPbBr3 nanowire photodetector with a vertical structure. Nano Energy, 53, 880-886(2018).

    [69] F. Cao, W. Tian, K. Deng, M. Wang, L. Li. Self-powered UV–Vis–NIR photodetector based on conjugated-polymer/CsPbBr3 nanowire array. Adv. Funct. Mater., 29, 1906756(2019).

    [70] J. Tao, Z. Xiao, J. Wang, C. Li, X. Sun, F. Li, X. Zou, G. Liao, Z. Zou. A self-powered, flexible photodetector based on perovskite nanowires with Ni-Al electrodes. J. Alloys. Compd., 845, 155311(2020).

    [71] C.-Y. Wu, W. Peng, T. Fang, B. Wang, C. Xie, L. Wang, W.-H. Yang, L.-B. Luo. Asymmetric contact-induced self-driven perovskite-microwire-array photodetectors. Adv. Electron. Mater., 5, 1900135(2019).

    [72] P. V. Chandrasekar, S. Yang, J. Hu, M. Sulaman, Y. Shi, M. I. Saleem, Y. Tang, Y. Jiang, B. Zou. Solution-phase, template-free synthesis of PbI2 and MAPbI3 nano/microtubes for high-sensitivity photodetectors. Nanoscale, 11, 5188-5196(2019).

    [73] Y. Liu, F. Li, C. Perumal Veeramalai, W. Chen, T. Guo, C. Wu, T. W. Kim. Inkjet-printed photodetector arrays based on hybrid perovskite CH3NH3PbI3 microwires. ACS Appl. Mater. Interfaces, 9, 11662-11668(2017).

    [74] Q. Ou, Y. Zhang, Z. Wang, J. A. Yuwono, R. Wang, Z. Dai, W. Li, C. Zheng, Z.-Q. Xu, X. Qi, S. Duhm, N. V. Medhekar, H. Zhang, Q. Bao. Strong depletion in hybrid perovskite p–n junctions induced by local electronic doping. Adv. Mater., 30, 1705792(2018).

    [75] P. Gui, J. Li, X. Zheng, H. Wang, F. Yao, X. Hu, Y. Liu, G. Fang. Self-driven all-inorganic perovskite microplatelet vertical Schottky junction photodetectors with a tunable spectral response. J. Mater. Chem. C, 8, 6804-6812(2020).

    [76] C. Tian, F. Wang, Y. Wang, Z. Yang, X. Chen, J. Mei, H. Liu, D. Zhao. Chemical vapor deposition method grown all-inorganic perovskite microcrystals for self-powered photodetectors. ACS Appl. Mater. Interfaces, 11, 15804-15812(2019).

    [77] H. Zhou, J. Zeng, Z. Song, C. R. Grice, C. Chen, Z. Song, D. Zhao, H. Wang, Y. Yan. Self-powered all-inorganic perovskite microcrystal photodetectors with high detectivity. J. Phys. Chem. Lett., 9, 2043-2048(2018).

    [78] H. Zhou, Z. Song, C. R. Grice, C. Chen, X. Yang, H. Wang, Y. Yan. Pressure-assisted annealing strategy for high-performance self-powered all-inorganic perovskite microcrystal photodetectors. J. Phys. Chem. Lett., 9, 4714-4719(2018).

    [79] W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, A. D. Mohite. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 347, 522-525(2015).

    [80] X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, M. Grätzel. A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells. Science, 353, 58-62(2016).

    [81] J.-W. Lee, H.-S. Kim, N.-G. Park. Lewis acid–base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res., 49, 311-319(2016).

    [82] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater., 13, 897-903(2014).

    [83] Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, Y. Yang. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc., 136, 622-625(2014).

    [84] D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, M. Grätzel. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy, 1, 16142(2016).

    [85] L. Dou, Y. Yang, J. You, Z. Hong, W.-H. Chang, G. Li, Y. Yang. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun., 5, 5404(2014).

    [86] S. V. N. Pammi, R. Maddaka, V.-D. Tran, J.-H. Eom, V. Pecunia, S. Majumder, M.-D. Kim, S. G. Yoon. CVD-deposited hybrid lead halide perovskite films for high-responsivity, self-powered photodetectors with enhanced photo stability under ambient conditions. Nano Energy, 74, 104872(2020).

    [87] X. Liu, Z. Liu, J. Li, X. Tan, B. Sun, H. Fang, S. Xi, T. Shi, Z. Tang, G. Liao. Ultrafast, self-powered and charge-transport-layer-free photodetectors based on high-quality evaporated CsPbBr3 perovskites for applications in optical communication. J. Mater. Chem. C, 8, 3337-3350(2020).

    [88] C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, F. Gao. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv. Mater., 30, 1803422(2018).

    [89] L. Li, F. Zhang, S. Ye, X. Peng, Z. Sun, J. Lian, L. Liu, J. Qu, J. Song. Self-powered photodetectors based on CsxDMA1-xPbI3 perovskite films with high detectivity and stability. Nano Energy, 71, 104611(2020).

    [90] T. Pang, R. Jia, Y. Wang, K. Sun, Z. Hu, Y. Zhu, S. Luan, Y. Zhang. Self-powered behavior based on the light-induced self-poling effect in perovskite-based transport layer-free photodetectors. J. Mater. Chem. C, 7, 609-616(2019).

    [91] Y. Deng, Z. Xiao, J. Huang. Light-induced self-poling effect on organometal trihalide perovskite solar cells for increased device efficiency and stability. Adv. Energy Mater., 5, 1500721(2015).

    [92] Y. Yuan, J. Chae, Y. Shao, Q. Wang, Z. Xiao, A. Centrone, J. Huang. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Adv. Energy Mater., 5, 1500615(2015).

    [93] L. Su, Z. X. Zhao, H. Y. Li, J. Yuan, Z. L. Wang, G. Z. Cao, G. Zhu. High-performance organolead halide perovskite-based self-powered triboelectric photodetector. ACS Nano, 9, 11310-11316(2015).

    [94] V. K. S. Hsiao, S.-F. Leung, Y.-C. Hsiao, P.-K. Kung, Y.-C. Lai, Z.-H. Lin, K. N. Salama, H. N. Alshareef, Z. L. Wang, J.-H. He. Photo-carrier extraction by triboelectricity for carrier transport layer-free photodetectors. Nano Energy, 65, 103958(2019).

    [95] O. Game, U. Singh, T. Kumari, A. Banpurkar, S. Ogale. ZnO(N)–Spiro-MeOTAD hybrid photodiode: an efficient self-powered fast-response UV (visible) photosensor. Nanoscale, 6, 503-513(2014).

    [96] C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang, J. Du. Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films. Sol. Energy Mater. Sol. Cells, 172, 341-346(2017).

    [97] F. Bai, J. Qi, F. Li, Y. Fang, W. Han, H. Wu, Y. Zhang. A high-performance self-powered photodetector based on monolayer MoS2/perovskite heterostructures. Adv. Mater. Interfaces, 5, 1701275(2018).

    [98] R. Saraf, V. Maheshwari. Self-powered photodetector based on electric-field-induced effects in MAPbI3 perovskite with improved stability. ACS Appl. Mater. Interfaces, 10, 21066-21072(2018).

    [99] M. Xue, H. Zhou, G. Ma, L. Yang, Z. Song, J. Zhang, H. Wang. Investigation of the stability for self-powered CsPbBr3 perovskite photodetector with an all-inorganic structure. Sol. Energy Mater. Sol. Cells, 187, 69-75(2018).

    [100] Z.-X. Zhang, Z. Long-Hui, X.-W. Tong, Y. Gao, C. Xie, Y. H. Tsang, L.-B. Luo, Y.-C. Wu. Ultrafast, self-driven, and air-stable photodetectors based on multilayer PtSe2/perovskite heterojunctions. J. Phys. Chem. Lett., 9, 1185-1194(2018).

    [101] U. Bansode, A. Rahman, S. Ogale. Low-temperature processing of optimally polymer-wrapped α-CsPbI3 for self-powered flexible photo-detector application. J. Mater. Chem. C, 7, 6986-6996(2019).

    [102] J. Ghosh, G. Natu, P. K. Giri. Plasmonic hole-transport-layer enabled self-powered hybrid perovskite photodetector using a modified perovskite deposition method in ambient air. Org. Electron., 71, 175-184(2019).

    [103] S. Murali, S. P. Madhusudanan, A. K. Pathak, P. M. Jayasankar, S. K. Batabyal. Carbon assisted methylammonium lead iodide microcrystalline device for an inexpensive self-powered photodetector. Mater. Lett., 254, 428-432(2019).

    [104] X.-W. Tong, Z.-X. Zhang, D. Wang, L.-B. Luo, C. Xie, Y.-C. Wu. Inorganic CsBi3I10 perovskite/silicon heterojunctions for sensitive, self-driven and air-stable NIR photodetectors. J. Mater. Chem. C, 7, 863-870(2019).

    [105] L.-H. Zeng, Q.-M. Chen, Z.-X. Zhang, D. Wu, H. Yuan, Y.-Y. Li, W. Qarony, S. P. Lau, L.-B. Luo, Y. H. Tsang. Multilayered PdSe2/perovskite Schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application. Adv. Sci., 6, 1901134(2019).

    [106] W. Zhu, M. Deng, Z. Zhang, D. Chen, H. Xi, J. Chang, J. Zhang, C. Zhang, Y. Hao. Intermediate phase halide exchange strategy toward a high-quality, thick CsPbBr3 film for optoelectronic applications. ACS Appl. Mater. Interfaces, 11, 22543-22549(2019).

    [107] G. R. Adams, V. O. Eze, M. A. S. Shohag, R. Simpson, H. Parker, O. I. Okoli. Fabrication of rapid response self-powered photodetector using solution-processed triple cation lead-halide perovskite. Eng. Res. Express, 2, 015043(2020).

    [108] Z. Liu, X. Liu, B. Sun, X. Tan, H. Ye, J. Zhou, Z. Tang, T. Shi, G. Liao. Cu-doping strategy to enhance photoelectric performance of self-powered hole-conductor-free perovskite photodetector for optical communication applications. Adv. Mater. Technol., 5, 2000260(2020).

    [109] M. I. Saleem, S. Yang, R. Zhi, H. Li, M. Sulaman, P. V. Chandrasekar, Z. Zhang, A. Batool, B. Zou. Self-powered, all-solution processed, trilayer heterojunction perovskite-based photodetectors. Nanotechnology, 31, 254001(2020).

    [110] W. Tian, L. Min, F. Cao, L. Li. Nested inverse opal perovskite toward superior flexible and self-powered photodetection performance. Adv. Mater., 32, 1906974(2020).

    [111] Z. Zhang, W. Zhang, Q. Jiang, Z. Wei, M. Deng, D. Chen, W. Zhu, J. Zhang, H. You. Toward high-performance electron/hole-transporting-layer-free, self-powered CsPbIBr2 photodetectors via interfacial engineering. ACS Appl. Mater. Interfaces, 12, 6607-6614(2020).

    [112] W. Zhu, M. Deng, D. Chen, D. Chen, H. Xi, J. Chang, J. Zhang, C. Zhang, Y. Hao. Sacrificial additive-assisted film growth endows self-powered CsPbBr3 photodetectors with ultra-low dark current and high sensitivity. J. Mater. Chem. C, 8, 209-218(2020).

    [113] H. Fang, Q. Li, J. Ding, N. Li, H. Tian, L. Zhang, T. Ren, J. Dai, L. Wang, Q. Yan. A self-powered organolead halide perovskite single crystal photodetector driven by a DVD-based triboelectric nanogenerator. J. Mater. Chem. C, 4, 630-636(2016).

    [114] S.-T. Han, H. Peng, Q. Sun, S. Venkatesh, K.-S. Chung, S. C. Lau, Y. Zhou, V. A. L. Roy. An overview of the development of flexible sensors. Adv. Mater., 29, 1700375(2017).

    [115] A. Manekkathodi, M.-Y. Lu, C. W. Wang, L.-J. Chen. Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics. Adv. Mater., 22, 4059-4063(2010).

    [116] W. Zheng, R. Lin, Z. Zhang, Q. Liao, J. Liu, F. Huang. An ultrafast-temporally-responsive flexible photodetector with high sensitivity based on high-crystallinity organic–inorganic perovskite nanoflake. Nanoscale, 9, 12718-12726(2017).

    [117] C. Xie, F. Yan. Flexible photodetectors based on novel functional materials. Small, 13, 1701822(2017).

    [118] Z. Liu, K. Parvez, R. Li, R. Dong, X. Feng, K. Müllen. Transparent conductive electrodes from graphene/PEDOT:PSS hybrid inks for ultrathin organic photodetectors. Adv. Mater., 27, 669-675(2015).

    [119] K. Rana, J. Singh, J.-H. Ahn. A graphene-based transparent electrode for use in flexible optoelectronic devices. J. Mater. Chem. C, 2, 2646-2656(2014).

    [120] C. Bao, W. Zhu, J. Yang, F. Li, S. Gu, Y. Wang, T. Yu, J. Zhu, Y. Zhou, Z. Zou. Highly flexible self-powered organolead trihalide perovskite photodetectors with gold nanowire networks as transparent electrodes. ACS Appl. Mater. Interfaces, 8, 23868-23875(2016).

    [121] M. Vosgueritchian, D. J. Lipomi, Z. Bao. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater., 22, 421-428(2012).

    [122] C. Perumal Veeramalai, S. Yang, J. Wei, M. Sulaman, R. Zhi, M. I. Saleem, Y. Tang, Y. Jiang, B. Zou. Porous single-wall carbon nanotube templates decorated with all-inorganic perovskite nanocrystals for ultraflexible photodetectors. ACS Appl. Nano Mater., 3, 459-467(2020).

    [123] G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, W. Mai. Atomic-layer deposition-assisted double-side interfacial engineering for high-performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications. Small, 15, 1902135(2019).

    [124] D. H. Shin, S. H. Shin, S. G. Lee, S. Kim, S.-H. Choi. High-detectivity/-speed flexible and self-powered graphene quantum dots/perovskite photodiodes. ACS Sustain. Chem. Eng., 7, 19961-19968(2019).

    [125] F. Cao, W. Tian, M. Wang, H. Cao, L. Li. Semitransparent, flexible, and self-powered photodetectors based on ferroelectricity-assisted perovskite nanowire arrays. Adv. Funct. Mater., 29, 1901280(2019).

    [126] F. Cao, W. Tian, L. Meng, M. Wang, L. Li. Ultrahigh-performance flexible and self-powered photodetectors with ferroelectric P(VDF-TrFE)/perovskite bulk heterojunction. Adv. Funct. Mater., 29, 1808415(2019).

    [127] H. Sun, T. Lei, W. Tian, F. Cao, J. Xiong, L. Li. Self-powered, flexible, and solution-processable perovskite photodetector based on low-cost carbon cloth. Small, 13, 1701042(2017).

    [128] K. Shen, H. Xu, X. Li, J. Guo, S. Sathasivam, M. Wang, A. Ren, K. L. Choy, I. P. Parkin, Z. Guo, J. Wu. Flexible and self-powered photodetector arrays based on all-inorganic CsPbBr3 quantum dots. Adv. Mater., 32, 2000004(2020).

    [129] S.-F. Leung, K.-T. Ho, P.-K. Kung, V. K. S. Hsiao, H. N. Alshareef, Z. L. Wang, J.-H. He. A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity. Adv. Mater., 30, 1704611(2018).

    [130] H. Lu, W. Tian, F. Cao, Y. Ma, B. Gu, L. Li. A self-powered and stable all-perovskite photodetector–solar cell nanosystem. Adv. Funct. Mater., 26, 1296-1302(2016).

    [131] D. Wu, H. Zhou, Z. Song, M. Zheng, R. Liu, X. Pan, H. Wan, J. Zhang, H. Wang, X. Li, H. Zeng. Welding perovskite nanowires for stable, sensitive, flexible photodetectors. ACS Nano, 14, 2777-2787(2020).

    [132] S. Lim, M. Ha, Y. Lee, H. Ko. Large-area, solution-processed, hierarchical MAPbI3 nanoribbon arrays for self-powered flexible photodetectors. Adv. Opt. Mater., 6, 1800615(2018).

    [133] M. Wang, F. Cao, L. Meng, W. Tian, L. Li. High-performance flexible self-powered photodetector based on perovskite and low-temperature processed In2S3 nanoflake film. Adv. Mater. Interfaces, 6, 1801526(2019).

    [134] J. M. Kim, D. H. Shin, S.-H. Choi. Highly-flexible perovskite photodiodes employing doped multilayer-graphene transparent conductive electrodes. Nanotechnology, 29, 425203(2018).

    [135] J. M. Kim, S. Kim, S.-H. Choi. High-performance n-i-p-type perovskite photodetectors employing graphene-transparent conductive electrodes N-type doped with amine group molecules. ACS Sustain. Chem. Eng., 7, 734-739(2019).

    [136] H. Sun, W. Tian, F. Cao, J. Xiong, L. Li. Ultrahigh-performance self-powered flexible double-twisted fibrous broadband perovskite photodetector. Adv. Mater., 30, 1706986(2018).

    [137] X.-D. Wang, W.-G. Li, J.-F. Liao, D.-B. Kuang. Recent advances in halide perovskite single-crystal thin films: fabrication methods and optoelectronic applications. Sol. RRL, 3, 1800294(2019).

    [138] B. Paci, A. Generosi, J. Wright, C. Ferrero, D. A. Carlo, F. Brunetti. Planar perovskite solar cells: local structure and stability issues. Sol. RRL, 1, 1700066(2017).

    [139] T.-B. Song, Q. Chen, H. Zhou, C. Jiang, H.-H. Wang, Y. Yang, Y. Liu, J. You, Y. Yang. Perovskite solar cells: film formation and properties. J. Mater. Chem. A, 3, 9032-9050(2015).

    [140] Z. Xiao, Y. Yuan, Q. Wang, Y. Shao, Y. Bai, Y. Deng, Q. Dong, M. Hu, C. Bi, J. Huang. Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells. Mater. Sci. Eng. R, 101, 1-38(2016).

    [141] I. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee, H. I. Karunadasa. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem., 53, 11232-11235(2014).

    [142] C. C. Stoumpos, C. D. Malliakas, M. G. Kanatzidis. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem., 52, 9019-9038(2013).

    [143] C. Ran, J. Xu, W. Gao, C. Huang, S. Dou. Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering. Chem. Soc. Rev., 47, 4581-4610(2018).

    [144] Q. Wang, B. Chen, Y. Liu, Y. Deng, Y. Bai, Q. Dong, J. Huang. Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energy Environ. Sci., 10, 516-522(2017).

    [145] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. I. Seok. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett., 13, 1764-1769(2013).

    [146] B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. D. Angelis, H.-G. Boyen. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater., 5, 1500477(2015).

    [147] C. L. C. Ellis, H. Javaid, E. C. Smith, D. Venkataraman. Hybrid perovskites with larger organic cations reveal autocatalytic degradation kinetics and increased stability under light. Inorg. Chem., 59, 12176-12186(2020).

    [148] W. Nie, J.-C. Blancon, A. J. Neukirch, K. Appavoo, H. Tsai, M. Chhowalla, M. A. Alam, M. Y. Sfeir, C. Katan, J. Even, S. Tretiak, J. J. Crochet, G. Gupta, A. D. Mohite. Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nat. Commun., 7, 11574(2016).

    [149] S. Ito, S. Tanaka, K. Manabe, H. Nishino. Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells. J. Phys. Chem. C, 118, 16995-17000(2014).

    [150] Z. Song, C. Wang, A. B. Phillips, C. R. Grice, D. Zhao, Y. Yu, C. Chen, C. Li, X. Yin, R. J. Ellingson, M. J. Heben, Y. Yan. Probing the origins of photodegradation in organic–inorganic metal halide perovskites with time-resolved mass spectrometry. Sustain. Energy Fuels, 2, 2460-2467(2018).

    [151] M. Bag, L. A. Renna, R. Y. Adhikari, S. Karak, F. Liu, P. M. Lahti, T. P. Russell, M. T. Tuominen, D. Venkataraman. Kinetics of ion transport in perovskite active layers and its implications for active layer stability. J. Am. Chem. Soc., 137, 13130-13137(2015).

    [152] B. Hailegnaw, S. Kirmayer, E. Edri, G. Hodes, D. Cahen. Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells. J. Phys. Chem. Lett., 6, 1543-1547(2015).

    [153] F. Giustino, H. J. Snaith. Toward lead-free perovskite solar cells. ACS Energy Lett., 1, 1233-1240(2016).

    [154] Z. Shi, J. Guo, Y. Chen, Q. Li, Y. Pan, H. Zhang, Y. Xia, W. Huang. Lead-free organic–inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectives. Adv. Mater., 29, 1605005(2017).

    [155] M. Wang, W. Wang, B. Ma, W. Shen, L. Liu, K. Cao, S. Chen, W. Huang. Lead-free perovskite materials for solar cells. Nano-Micro Lett., 13, 62(2021).

    [156] N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, H. J. Snaith. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci., 7, 3061-3068(2014).

    [157] N. Leblanc, N. Mercier, L. Zorina, S. Simonov, P. Auban-Senzier, C. Pasquier. Large spontaneous polarization and clear hysteresis loop of a room-temperature hybrid ferroelectric based on mixed-halide [BiI3Cl2] polar chains and methylviologen dication. J. Am. Chem. Soc., 133, 14924-14927(2011).

    [158] W. Bi, N. Leblanc, N. Mercier, P. Auban-Senzier, C. Pasquier. Thermally induced Bi(III) lone pair stereoactivity: ferroelectric phase transition and semiconducting properties of (MV)BiBr5 (MV = methylviologen). Chem. Mater., 21, 4099-4101(2009).

    [159] B.-W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, E. M. J. Johansson. Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application. Adv. Mater., 27, 6806-6813(2015).

    [160] T. Krishnamoorthy, H. Ding, C. Yan, W. L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, S. G. Mhaisalkar. Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A, 3, 23829-23832(2015).

    Chandrasekar Perumal Veeramalai, Shuai Feng, Xiaoming Zhang, S. V. N. Pammi, Vincenzo Pecunia, Chuanbo Li. Lead–halide perovskites for next-generation self-powered photodetectors: a comprehensive review[J]. Photonics Research, 2021, 9(6): 968
    Download Citation