• Infrared and Laser Engineering
  • Vol. 47, Issue 11, 1113001 (2018)
Zhang Bowen*, Wang Xiaoyong, Zhao Ye, and Yang Jiawen
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla201847.1113001 Cite this Article
    Zhang Bowen, Wang Xiaoyong, Zhao Ye, Yang Jiawen. Progress of support technique of space-based large aperture mirror[J]. Infrared and Laser Engineering, 2018, 47(11): 1113001 Copy Citation Text show less
    References

    [1] William R Oegerle. ATLAST-9.2 m: a large-aperture deployable space telescope[C]//SPIE 2010, 7731: 77312M.

    [2] William R Arnold. Evolving design criteria for very large aperture space-based telescopes and their influence on the need for integrated tools in the optimization process[C]//SPIE, 2015, 9573: 95730G.

    [3] Li Zongxuan, Jin Guang, Zhang Lei, et al. Overview and outlook of monolithic primary mirror of spaceborne telescope with 3.5 m aperture[J]. Chinese Optics, 2014, 7(4): 532-541. (in Chinese)

    [4] Zhu Junqing, Sha Wei, Chen Changzheng, et al. Position layout of rear three points mounting for space rectangular mirror[J]. Optics and Precision Engineering, 2015, 23(9): 2562-2569. (in Chinese)

    [5] Yan Yong, Jia Jiqiang, Jin Guang. Design of new type spaceborne lightweighted primary mirror support[J]. Optics and Precision Engineering, 2008, 16(8): 1533-1539. (in Chinese)

    [6] Xu Hong, Guan Yingjun. Structural design of 1m diameter space mirror component of space camera [J]. Optics and Precision Engineering, 2013, 21(6): 1488-1495. (in Chinese)

    [7] Yoder P R. Opto-Mechanical Systems Design [M]. Zhou Haixian, Cheng Yunfang, translated. Beijing: China Machine Press, 2008. (in Chinese)

    [8] Zhang Limin, Wang Fugao, An Qichang, et al. Application of Bipod to supporting structure of minitype reflector[J]. Optics and Precision Engineering, 2015, 23(2): 438-443. (in Chinese)

    [9] Zhou Yuxiang, Shen Xia. Structure design of backside bipod flexure mount for space reflector[J]. Laser Technology, 2017, 41(1): 142-145. (in Chinese)

    [10] Hom C, Irwin J W, Stubbs D M, et al. Design of bipod flexure mounts for the IRIS spectrometer[C]//SPIE, 2013, 8836: 88360Q.

    [11] Kaercher Hans J, Peter Eisentraeger, Martin Sü. Mechanical principles of large mirror supports[C]//SPIE, 2010, 7733: 77332O.

    [12] Curtis Baffes, Terry Mast. Primary mirror segmentation studies for the Thirty Meter Telescope[C]//SPIE, 2008, 7018: 70180S.

    [13] Cayrel M. E-ELT optomechanics: overview [C]//SPIE, 2012, 8444: 84441X.

    [14] Bittner H, Erdmann M, Haberler P. SOFIA primary mirror assembly: structural properties and optical performance [C]//SPIE, 2003, 4857: 266-273.

    [15] Sean C Casey. The SOFIA program: astronomers return to the stratosphere [C]//SPIE, 2006, 6267: 62670Q.

    [16] Paul Keas, Rick Brewster. SOFIA Telescope modal survey test and test-model correlation [C]//SPIE, 2010, 7738: 77380K.

    [17] Charlie Atkinson, Scott Texter. Status of the JWST optical telescope element[C]//SPIE, 2006, 6265: 62650T.

    [18] Doyle K B, Genberg V L, Michaels G J. Integrated Optomechanical Analysis [M]. 2nd ed. Lian Huadong, Wang Xiaoyong, Xu Peng, translated. Beijing: National Defense Industry Press, 2015. (in Chinese)

    [19] Nelson J E, Lubliner J, Mast T S. Telescope mirror supports: plate deflection on point supports [C]//SPIE, 1982, 332: 212-228.

    [20] Cho M K, Richard R M, Vukobratovich D. Optimum mirror shapes and supports for light weight mirrors subjected to self-weight [C]//SPIE, 1989, 1167: 2-19.

    [21] William R Arnold, Matthew Fitagerald, Rubin Jaca Rosa, et al. Next generation lightweight mirror modeling software[C]//SPIE, 2013, 8836: 883601.

    [22] William R Arnold, Ryan M Bevan, H Philip Stahl. Integration of mirror design with suspension system using NASA′s new mirror modeling software[C]//SPIE, 2013, 8836: 88360J.

    [23] William R Arnold. Recent updates to the Arnold Mirror Modeler and integration into the evolving NASA overall design system for large space-based optical systems[C]//SPIE, 2015, 9573: 95730H.

    [24] Fan Lei, Yang Hongbo, Zhang Jingxu, et al. Lightweight design for 2 m SiC arch mirror [J]. Opto-Electronic Engineering, 2010, 37(10): 71-76. (in Chinese)

    [25] Geng Qixian, Yang Hongbo, Li Yanwei. Optimum method of backside support position for large-aperture primary mirror with flat rear surface[J]. Optical Technology, 2007, 33(6): 889-895. (in Chinese)

    [26] Wang Shuxin, Li Jinglin, Zhang Fan, et al. Optimization of large aperture space reflector based on RSM [J]. Infrared and Laser Engineering, 2013, 42(S2): 291-297. (in Chinese)

    [27] Ding Ke, Qi Bo, Bian Jiang. Integrated opto-mechanical optimization analysis of large-aperture primary mirror′s support position[C]//SPIE, 2016, 9682: 968213.

    [28] Wang Kejun, Dong Jihong, Xuan Ming, et al. Compound support structure for large aperture mirror of space remote sensor[J]. Optics and Precision Engineering, 2016, 24(7): 1719-1730. (in Chinese)

    [29] Lan Bin, Yang Hongbo, Wu Xiaoxia, et al. Optimal design of Φ620 mm ground mirror assembly [J]. Infrared and Laser Engineering, 2017, 46(1): 0118001. (in Chinese)

    [30] Colin Cunningham, Adrian Russell. Precision engineering for astronomy: historical origins and the future revolution in ground-based astronomy [J]. Phil Trans R Soc A, 2012, 370(1973): 3852-3886.

    [31] Gelman A, Maliah E. Mechanism for passive thermal compensation in harsh environment[C]//SPIE, 2007, 6715: 671506.

    [32] Virginia Ford, Rick Parks. Passive thermal compensation of the optical bench of the galaxy evolution explorer[C]//SPIE, 2004, 5528: 171-180.

    [33] Yan Conglin, Liu Weilin, Wu Qinzhang. Design and analysis on a kind of primary reflector support structure based on thermal compensation principle[C]//SPIE, 2012, 8415: 841511.

    [34] Bayar Mete. Lens barrel optomechanical design principles [J]. Optical Engineering, 1981, 20(2): 181-186.

    [35] James J Herbert. Techniques for deriving optimal bondlines for athermal bonded mounts[C]//SPIE, 2006, 6288: 62880J.

    [36] Christopher Monti. Athermal bonded mounts: Incorporating aspect ratio into a closed-form solution [C]//SPIE, 2007, 6665: 666503.

    [37] Guo Junli, An Yuan, Li Zongxuan, et al. Bonding technique of mirror components in space camera[J]. Infrared and Laser Engineering, 2016, 45(3): 0313002. (in Chinese)

    [38] Yang Liwei, Li Zhilai, Xue Donglin. Analysis and test for effect of structural adhesive shrinkage during curing on mirror surface [J]. Optical Technology, 2014, 40(4): 307-312. (in Chinese)

    [39] Dong Deyi, Li Zhilai. Simulation and experiment of influence of adhesive curing on reflective mirror surface[J]. Optics and Precision Engineering, 2014, 22(10): 2698-2707. (in Chinese)

    [40] Doyle K B, Michels G J, Genberg V L. Athermal design of nearly incompressible bonds[C]//SPIE, 2002, 4771: 296-303.

    [41] Wang Dong, Yan Yong, Jin Guang. Nonlinear analysis method for predicting optical surface deformations resulted from assembly process[C]//SPIE, 2010, 7654: 76540A.

    CLP Journals

    [1] Chunlin Yang. Influence of phase additive effect on beam smoothing character of continuous phase plate[J]. Infrared and Laser Engineering, 2020, 49(9): 20190515

    [2] Qiuyue Yu, Xiaohua Zhou, Guoyan Wang, Guobao Qiao, Tianbin Lv, Zhaojian Zhang, Jinghua Wang, Jianye Shao, Yuntao Cheng. Reduction of grid effect in ultra-light mirror machining by inflatable balanced method (invited)[J]. Infrared and Laser Engineering, 2022, 51(9): 20220389

    [3] Chao Zhang, Hui Xing, Junru Song, Junhua Yan, Kai Zhang, Chongyang Li, Zhiyuan Liu, Zhongrui Jin. Measurement of optical axis eccentricity of a large-aperture concave ellipsoid mirror[J]. Infrared and Laser Engineering, 2021, 50(12): 20210196

    Zhang Bowen, Wang Xiaoyong, Zhao Ye, Yang Jiawen. Progress of support technique of space-based large aperture mirror[J]. Infrared and Laser Engineering, 2018, 47(11): 1113001
    Download Citation