• Laser & Optoelectronics Progress
  • Vol. 54, Issue 8, 80402 (2017)
Zhang Xuehai1、*, Liu Chong2, Liang Chao1, Meng Fanjian1, and Li Jingmin2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop54.080402 Cite this Article Set citation alerts
    Zhang Xuehai, Liu Chong, Liang Chao, Meng Fanjian, Li Jingmin. Microlens Array Applied for Laser Induced Fluorescence Detection[J]. Laser & Optoelectronics Progress, 2017, 54(8): 80402 Copy Citation Text show less
    References

    [1] Park S, Jeong Y, Kim J, et al. Fabrication of poly (dimethylsiloxane) microlens for laser-induced fluorescence detection[J]. Japanese Journal of Applied Physics, 2006, 45(6B): 5614-5617.

    [2] Yang H, Shyu R F, Huang J W. New production method of convex microlens arrays for integrated fluorescence microfluidic detection systems[J]. Microsystem Technologies, 2006, 12(10): 907-912.

    [3] Roy E, Voisin B, Gravel J F, et al. Microlens array fabrication by enhanced thermal reflow process: towards efficient collection of fluorescence light from microarrays[J]. Microelectronic Engineering, 2009, 86(11): 2255-2261.

    [4] Hung T Q, Chin W H, Sun Y, et al. A novel lab-on-chip platform with integrated solid phase PCR and supercritical angle fluorescence (SAF) microlens array for highly sensitive and multiplexed pathogen detection[J]. Biosensors and Bioelectronics, 2016, 90: 217-223.

    [5] Bernat I, Gonzalez-Murillo J J, Fonseca L, et al. Optical particle detection in liquid suspensions with a hybrid integrated microsystem[J]. Sensors and Actuators A: Physical, 2016, 247: 629-640.

    [6] Kamei T, Sumitomo K, Ito S, et al. Heterogeneously integrated laser-induced fluorescence detection devices: integration of an excitation source[J]. Japanese Journal of Applied Physics, 2014, 53(6S): 06JL02.

    [7] Schonbrun E, Steinvurzel P E, Crozier K B.A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array[J]. Optics Express, 2011, 19(2): 1385-1394.

    [8] Piruska A, Nikcevic I, Lee S H, et al. The autofluorescence of plastic materials and chips measured under laser irradiation[J]. Lab on a Chip, 2005, 5(12): 1348-1354.

    [9] Severi M, Mottier P. Etching selectivity control during resist pattern transfer into silica for the fabrication of microlenses with reduced spherical aberrations[J]. Optical Engineering, 1999, 38(1): 146-150.

    [10] O′Neill F T, Sheridan J T. Photoresist reflow method of microlens production. Part I: background and experiments[J]. Optik-International Journal for Light and Electron Optics, 2002, 113(9): 391-404.

    [11] Audran S, Faure B, Mortini B, et al. Study of mechanisms involved in photoresist microlens formation[J]. Microelectronic Engineering, 2006, 83: 1087-1090.

    [12] Ashraf M, Gupta C, Chollet F, et al. Geometrical characterization techniques for microlens made by thermal reflow of photoresist cylinder[J]. Optics and Lasers in Engineering, 2008, 46(10): 711-720.

    [13] Hung K Y, Tseng F G, Chou H P. Application of 3D gray mask for the fabrication of curved SU-8 structures[J]. Microsystem Technologies, 2005, 11(4): 365-369.

    [14] Yang J J, Liao Y S, Chen C F. Fabrication of long hexagonal micro-lens array by applying gray-scale lithography in micro-replication process[J]. Optics Communications, 2007, 270(2): 433-440.

    [15] Croutxé-Barghorn C, Soppera O, Lougnot D J.Fabrication of microlenses by direct photo-induced crosslinking polymerization[J]. Applied Surface Science, 2000, 168: 89-91.

    [16] Chang C Y, Yu C H. A basic experimental study of ultrasonic assisted hot embossing process for rapid fabrication of microlens arrays[J]. Journal of Micromechanics and Microengineering, 2015, 25(2): 025010.

    [17] Lei Yu, Tong Qing, Zhang Xinyu. Liquid crystal microlens array for dual mode imaging[J]. Acta Optica Sinica, 2016, 36(5): 0511004.

    [18] Cui Jianli, Zhang Binzhen, Duan Junping, et al. Rapid fabrication technology of microlens arrays based on NOA73[J]. Chinese J Lasers, 2016, 43(7): 0703003.

    [19] Lin B S, Yang Y C, Ho C Y, et al. A PDMS-based cylindrical hybrid lens for enhanced fluorescence detection in microfluidic systems[J]. Sensors, 2014, 14(2): 2967-2980.

    [20] Zhang Xiangwu. Derivation of lens equation by using Fermat′s principle[J]. College Physics, 1999, 18(1): 30-31.

    [21] Chen Yuying. Pharmaceutical practical instrument analysis[M]. Beijing: Higher Education Press, 2006: 108-109.

    CLP Journals

    [1] Han Chao, Qiu Chenyu, Hou Mengdi, Zhang Tingting, Wang Wenjie. Measurement of Liquid Refractive Index Based on Optofluidic Single Mode Laser[J]. Laser & Optoelectronics Progress, 2018, 55(8): 81401

    [2] Liang Xiyue, Hou Mengdi, Zhang Tingting, Qiu Chengyu, Wang Wenjie. High Resolution Melting Technology Based on Fabry-Perot Microcavity Laser[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101702

    Zhang Xuehai, Liu Chong, Liang Chao, Meng Fanjian, Li Jingmin. Microlens Array Applied for Laser Induced Fluorescence Detection[J]. Laser & Optoelectronics Progress, 2017, 54(8): 80402
    Download Citation