• Photonics Research
  • Vol. 8, Issue 3, 368 (2020)
Yifan Li1, Yating Zhang1、*, Yu Yu1, Zhiliang Chen1, Qingyan Li1, Tengteng Li1, Jie Li1, Hongliang Zhao1, Quan Sheng1、4, Feng Yan2、5, Zhen Ge3, Yuxin Ren3, Yongsheng Chen3, and Jianquan Yao1、6
Author Affiliations
  • 1Key Laboratory of Optoelectronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Department of Applied Physics and Materials, Research Centre, The Hong Kong Polytechnic University, Hong Kong, China
  • 3National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin 300071, China
  • 4e-mail: shengquan@tju.edu.cn
  • 5e-mail: apafyan@polyu.edu.hk
  • 6e-mail: jqyao@tju.edu.cn
  • show less
    DOI: 10.1364/PRJ.380249 Cite this Article Set citation alerts
    Yifan Li, Yating Zhang, Yu Yu, Zhiliang Chen, Qingyan Li, Tengteng Li, Jie Li, Hongliang Zhao, Quan Sheng, Feng Yan, Zhen Ge, Yuxin Ren, Yongsheng Chen, Jianquan Yao. Ultraviolet-to-microwave room-temperature photodetectors based on three-dimensional graphene foams[J]. Photonics Research, 2020, 8(3): 368 Copy Citation Text show less
    References

    [1] T. Deng, Z. Zhang, Y. Liu, Y. Wang, F. Su, S. Li, Y. Zhang, H. Li, H. Chen, Z. Zhao, Y. Li, Z. Liu. Three-dimensional graphene field-effect transistors as high-performance photodetectors. Nano Lett., 19, 1494-1503(2019).

    [2] Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J. L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, J. L. Sun. High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films. ACS Appl. Mater. Interf., 10, 36304-36311(2018).

    [3] H. Fang, W. Hu. Photogating in low dimensional photodetectors. Adv. Sci., 4, 1700323(2017).

    [4] N. Guo, W. Hu, T. Jiang, F. Gong, W. Luo, W. Qiu, P. Wang, L. Liu, S. Wu, L. Liao, X. Chen, W. Lu. High-quality infrared imaging with graphene photodetectors at room temperature. Nanoscale, 8, 16065-16072(2016).

    [5] F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, M. Polini. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 9, 780-793(2014).

    [6] J. Li, L. Niu, Z. Zheng, F. Yan. Photosensitive graphene transistors. Adv. Mater., 26, 5239-5273(2014).

    [7] Z. Liu, S. P. Lau, F. Yan. Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing. Chem. Soc. Rev., 44, 5638-5679(2015).

    [8] Z. Sun, Z. Liu, J. Li, G.-A. Tai, S.-P. Lau, F. Yan. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater., 24, 5878-5883(2012).

    [9] V. Adinolfi, E. H. Sargent. Photovoltage field-effect transistors. Nature, 542, 324-327(2017).

    [10] M. Tonouchi. Cutting-edge terahertz technology. Nat. Photonics, 1, 97-105(2007).

    [11] R. CiupaAntoni, R. Rogalski. Performance limitations of photon and thermal infrared detectors. Opto-Electron. Rev., 5, 257-266(1997).

    [12] F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, M. Polini. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 9, 780-793(2014).

    [13] V. Shautsova, T. Sidiropoulos, X. Xiao, N. A. Gusken, N. C. G. Black, A. M. Gilbertson, V. Giannini, S. A. Maier, L. F. Cohen, R. F. Oulton. Plasmon induced thermoelectric effect in graphene. Nat. Commun., 9, 5190(2018).

    [14] W. Liu, W. Wang, Z. Guan, H. Xu. A plasmon modulated photothermoelectric photodetector in silicon nanostripes. Nanoscale, 11, 4918-4924(2019).

    [15] S. Limpert, A. Burke, I. J. A. Chen, N. Anttu, S. Lehmann, S. Fahlvik, S. Bremner, G. Conibeer, C. Thelander, M. E. Pistol, H. Linke. Bipolar photothermoelectric effect across energy filters in single nanowires. Nano Lett., 17, 4055-4060(2017).

    [16] X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, M. S. Fuhrer. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat. Nanotechnol., 9, 814-819(2014).

    [17] X. Xu, N. M. Gabor, J. S. Alden, A. M. van der Zande, P. L. McEuen. Photo-thermoelectric effect at a graphene interface junction. Nano Lett., 10, 562-566(2010).

    [18] M. He, Y. J. Lin, C. M. Chiu, W. Yang, B. Zhang, D. Yun, Y. Xie, Z.-H. Lin. A flexible photo-thermoelectric nanogenerator based on MoS2 PU photothermal layer for infrared light harvesting. Nano Energy, 49, 588-595(2018).

    [19] N. M. Jia Qi, X. Ma, R. Adelung, Y. Yang. Enhanced photocurrent in BiFeO3 materials by coupling temperature and thermo-phototronic effects for self-powered ultraviolet photodetector system. ACS Appl. Mater. Interface, 10, 13712-13719(2018).

    [20] M. Zhao, D. Kim, V. L. Nguyen, J. Jiang, L. Sun, Y. H. Lee, H. Yang. Coherent thermoelectric power from graphene quantum dots. Nano Lett., 19, 61-68(2019).

    [21] Z. Zheng, J. Yao, L. Zhu, W. Jiang, B. Wang, G. Yang, J. Li. Tin dioxide quantum dots coupled with graphene for high-performance bulk-silicon Schottky photodetector. Mater. Horizons, 5, 727-737(2018).

    [22] D. Paria, H. H. Jeong, V. Vadakkumbatt, P. Deshpande, P. Fischer, A. Ghosh, A. Ghosh. Graphene-silver hybrid devices for sensitive photodetection in the ultraviolet. Nanoscale, 10, 7685-7693(2018).

    [23] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater., 22, 3906-3924(2010).

    [24] A. V. Emelianov, D. Kireev, A. Offenhäusser, N. Otero, P. M. Romero, I. I. Bobrinetskiy. Thermoelectrically driven photocurrent generation in femtosecond laser patterned graphene junctions. ACS Photon., 5, 3107-3115(2018).

    [25] X. Wang, Z. Cheng, K. Xu, H. K. Tsang, J.-B. Xu. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics, 7, 888-891(2013).

    [26] H. Chang, H. Wu. Graphene-based nanomaterials: synthesis, properties, and optical and optoelectronic applications. Adv. Funct. Mater., 23, 1984-1997(2013).

    [27] G. J. Amador, Z. Ren, A. F. Tabak, Y. Alapan, O. Yasa, M. Sitti. Temperature gradients drive bulk flow within microchannel lined by fluid-fluid interfaces. Small, 15, 1900472(2019).

    [28] G. Li, L. Liu, G. Wu, W. Chen, S. Qin, Y. Wang, T. Zhang. Self-powered UV-near infrared photodetector based on reduced graphene oxide/n-Si vertical heterojunction. Small, 12, 5019-5026(2016).

    [29] W. Chen, P. Xiao, H. Chen, H. Zhang, Q. Zhang, Y. Chen. Polymeric graphene bulk materials with a 3D cross-linked monolithic graphene network. Adv. Mater., 31, 1802403(2018).

    [30] K. Zhao, T. Zhang, H. Chang, Y. Yang, P. Xiao, H. Zhang, C. Li, C. Sekhar Tiwary, P. M. Ajayan, Y. Chen. Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures. Sci. Adv., 5, eaav2589(2019).

    [31] Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, Y. Chen. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater., 27, 2049-2053(2015).

    [32] Y. Yang, R. Zhao, T. Zhang, K. Zhao, P. Xiao, Y. Ma, P. M. Ajayan, G. Shi, Y. Chen. Graphene-based standalone solar energy converter for water desalination and purification. ACS Nano, 12, 829-835(2018).

    [33] L. T. Duy, D.-J. Kim, T. Q. Trung, V. Q. Dang, B.-Y. Kim, H. K. Moon, N.-E. Lee. High performance three-dimensional chemical sensor platform using reduced graphene oxide formed on high aspect-ratio micro-pillars. Adv. Funct. Mater., 25, 883-890(2015).

    [34] P. R. Golam Haider, C.-W. Chiang, W.-C. Tan, Y.-R. Liou, H.-T. Chang, C.-T. Liang, W.-H. Shih, Y.-F. Chen. Electrical-polarization-induced ultrahigh responsivity photodetectors based on graphene and graphene quantum dots. Adv. Funct. Mater., 26, 620-628(2016).

    [35] Y. Ma, Y. Chen. Three-dimensional graphene networks: synthesis, properties and applications. Nat. Sci. Rev., 2, 40-53(2015).

    [36] H. C. Zhiyu Huang, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, Y. Chen. Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam. Adv. Funct. Mater., 28, 1704363(2017).

    [37] Y. Liu, F. Wang, X. Wang, X. Wang, E. Flahaut, X. Liu, Y. Li, X. Wang, Y. Xu, Y. Shi, R. Zhang. Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors. Nat. Commun., 6, 98589(2015).

    [38] Y. Yu, Y. Zhang, Z. Zhang, H. Zhang, X. Song, M. Cao, Y. Che, H. Dai, J. Yang, J. Wang, H. Zhang, J. Yao. Broadband phototransistor based on CH3NH3PbI3 perovskite and PbSe quantum dot heterojunction. J. Phys. Chem. Lett., 8, 445-451(2017).

    [39] Y. C. Hua Tian, J. Sunc, J. He. Enhanced broadband photoresponse of substrate-free reduced graphene oxide photodetectors. RSC Adv., 7, 46536-46544(2017).

    [40] B. Chitara, L. S. Panchakarla, S. B. Krupanidhi, C. N. Rao. Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons. Adv. Mater., 23, 5419-5424(2011).

    [41] M. W. Graham, S.-F. Shi, D. C. Ralph, J. Park, P. L. McEuen. Photocurrent measurements of supercollision cooling in graphene. Nat. Phys., 9, 103-108(2012).

    [42] J. C. Song, M. S. Rudner, C. M. Marcus, L. S. Levitov. Hot carrier transport and photocurrent response in graphene. Nano Lett., 11, 4688-4692(2011).

    [43] D. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, X. Xu. Ultrafast hot-carrier-dominated photocurrent in graphene. Nat. Nanotechnol., 7, 114-118(2012).

    [44] Q. Wang, C. Z. Li, S. Ge, J. G. Li, W. Lu, J. Lai, X. Liu, J. Ma, D. P. Yu, Z. M. Liao, D. Sun. Ultrafast broadband photodetectors based on three-dimensional dirac semimetal Cd3As2. Nano Lett., 17, 834-841(2017).

    [45] X. Xu, N. M. Gabor, J. S. Alden, A. M. van der Zande, P. L. McEuen. Photo-thermoelectric effect at a graphene interface junction. Nano Lett., 10, 562-566(2010).

    CLP Journals

    [1] Lucas Deniel, Erwan Weckenmann, Diego Pérez Galacho, Christian Lafforgue, Stéphane Monfray, Carlos Alonso-Ramos, Laurent Bramerie, Frédéric Boeuf, Laurent Viven, Delphine Marris-Morini. Silicon photonics phase and intensity modulators for flat frequency comb generation[J]. Photonics Research, 2021, 9(10): 2068

    [2] Xianglei Yan, Xihua Zou, Peixuan Li, Wei Pan, Lianshan Yan. Covert wireless communication using massive optical comb channels for deep denoising[J]. Photonics Research, 2021, 9(6): 1124

    [3] Yifan Li, Yating Zhang, Zhiliang Chen, Qingyan Li, Tengteng Li, Mengyao Li, Hongliang Zhao, Quan Sheng, Wei Shi, Jianquan Yao. Self-powered, flexible, and ultrabroadband ultraviolet-terahertz photodetector based on a laser-reduced graphene oxide/CsPbBr3 composite[J]. Photonics Research, 2020, 8(8): 1301

    Yifan Li, Yating Zhang, Yu Yu, Zhiliang Chen, Qingyan Li, Tengteng Li, Jie Li, Hongliang Zhao, Quan Sheng, Feng Yan, Zhen Ge, Yuxin Ren, Yongsheng Chen, Jianquan Yao. Ultraviolet-to-microwave room-temperature photodetectors based on three-dimensional graphene foams[J]. Photonics Research, 2020, 8(3): 368
    Download Citation